Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_1_a2, author = {N. A. Kudryashov and D. I. Sinelshchikov}, title = {Classical and {Nonclassical} {Symmetries} of {Nonlinear} {Differential} {Equation} for {Describing} {Waves} in a {Liquid} with {Gas} {Bubbles}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {45--52}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a2/} }
TY - JOUR AU - N. A. Kudryashov AU - D. I. Sinelshchikov TI - Classical and Nonclassical Symmetries of Nonlinear Differential Equation for Describing Waves in a Liquid with Gas Bubbles JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 45 EP - 52 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a2/ LA - ru ID - MAIS_2014_21_1_a2 ER -
%0 Journal Article %A N. A. Kudryashov %A D. I. Sinelshchikov %T Classical and Nonclassical Symmetries of Nonlinear Differential Equation for Describing Waves in a Liquid with Gas Bubbles %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 45-52 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a2/ %G ru %F MAIS_2014_21_1_a2
N. A. Kudryashov; D. I. Sinelshchikov. Classical and Nonclassical Symmetries of Nonlinear Differential Equation for Describing Waves in a Liquid with Gas Bubbles. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a2/
[1] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 2, Taylor Francis, New York, 1990, 388 pp.
[2] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Wave Propagation in Gas-Liquid Media, CRC Press, Boca Raton, 1993, 240 pp.
[3] N. A. Kudryashov, D. I. Sinelshchikov, “An extended equation for the description of nonlinear waves in a liquid with gas bubbles”, Wave Motion, 50:3 (2013), 351–362 | DOI | MR
[4] J. Weiss, M. Tabor, G. Carnevale, “The Painleve property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[5] N. A. Kudryashov, “On types of nonlinear nonintegrable equations with exact solutions”, Phys. Lett. A, 155:4–5 (1991), 269–275 | DOI | MR
[6] N. A. Kudryashov, “Singular manifold equations and exact solutions for some nonlinear partial differential equations”, Phys. Lett. A, 182:4–6 (1993), 356–362 | DOI | MR
[7] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, Waltham, 1982, 432 pp. | MR | Zbl
[8] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993, 513 pp. | MR | Zbl
[9] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Mathematics and its Applications, Springer, New York, 2001, 396 pp.
[10] G. W. Bluman, J. D. Cole, “The general similarity solution of the heat equation”, J. Math. Mech., 18:11 (1969), 1025–1042 | MR | Zbl
[11] R. Z. Zhdanov, I. M. Tsyfra, R. O. Popovych, “A Precise Definition of Reduction of Partial Differential Equations”, J. Math. Anal. Appl., 238:1 (1999), 101–123 | DOI | MR | Zbl
[12] M. Kunzinger, R. O. Popovych, “Singular reduction operators in two dimensions”, J. Phys. A Math. Theor., 41:50 (2008), 505201 | DOI | MR | Zbl