Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_1_a0, author = {V. F. Butuzov and I. V. Denisov}, title = {Corner {Boundary} {Layer} in {Nonlinear} {Elliptic} {Problems} {Containing} {Derivatives} of {First} {Order}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {7--31}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a0/} }
TY - JOUR AU - V. F. Butuzov AU - I. V. Denisov TI - Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 7 EP - 31 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a0/ LA - ru ID - MAIS_2014_21_1_a0 ER -
%0 Journal Article %A V. F. Butuzov %A I. V. Denisov %T Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 7-31 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a0/ %G ru %F MAIS_2014_21_1_a0
V. F. Butuzov; I. V. Denisov. Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 7-31. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a0/
[1] V. F. Butuzov, “The asymptotic properties of solutions of the equation $\mu^{2}\Delta u-k^{2}(x,y)u=f(x,y)$ in a rectangle”, Differential Equations, 9:9 (1973), 1274 | MR | Zbl
[2] V. F. Butuzov, “On asymptotics of solutions of singularly perturbed equations of elliptic type in the rectangle”, Differential Equations, 11:6 (1975), 780 | MR | Zbl
[3] V. F. Butuzov, “A singularly perturbed elliptic equation with two small parameters”, Differential Equations, 12:10 (1976), 1261 | MR | Zbl
[4] I. V. Denisov, “Quasilinear singularly perturbed elliptic equations in a rectangle”, Computational Mathematics and Mathematical Physics, 35:11 (1995), 1341–1350 | MR | Zbl
[5] I. V. Denisov, “The problem of finding the dominant term of the corner part of the asymptotics of the solution to a singularly perturbed elliptic equation with a nonlinearity”, Computational Mathematics and Mathematical Physics, 39:5 (1999), 747–759 | MR | Zbl
[6] I. V. Denisov, “The corner boundary layer in nonlinear singularly perturbed elliptic equations”, Computational Mathematics and Mathematical Physics, 41:3 (2001), 362–378 | MR | Zbl
[7] I. V. Denisov, “The corner boundary layer in nonmonotone singularly perturbed boundary value problems with nonlinearities”, Computational Mathematics and Mathematical Physics, 44:9 (2004), 1592–1610 | MR | Zbl
[8] I. V. Denisov, “Corner boundary layer in nonlinear singularly perturbed elliptic problems”, Computational Mathematics and Mathematical Physics, 48:1 (2008), 59–75 | DOI | MR | Zbl
[9] Denisov I. V., “O nekotoryh klassah funktsiy”, Chebyshevskiy sbornik, 10:2 (2009), 79–108 (in Russian) | MR | Zbl
[10] Vasilieva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnyh vozmusheniy, Vysshaya shkola, M., 1990 (in Russian) | MR