Subword Complexes and Nil-Hecke Moves
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite Coxeter group $W$, a subword complex is a simplicial complex associated with a pair $(\mathbf{Q}, \rho),$ where $\mathbf{Q}$ is a word in the alphabet of simple reflections, $\rho$ is a group element. We describe the transformations of such a complex induced by nil-moves and inverse operations on $\mathbf{Q}$ in the nil-Hecke monoid corresponding to $W$. If the complex is polytopal, we also describe such transformations for the dual polytope. For $W$ simply-laced, these descriptions and results of [5] provide an algorithm for the construction of the subword complex corresponding to $(\mathbf{Q}, \rho)$ from the one corresponding to $(\delta(\mathbf{Q}), \rho),$ for any sequence of elementary moves reducing the word $\mathbf{Q}$ to its Demazure product $\delta(\mathbf{Q})$. The former complex is spherical or empty if and only if the latter one is empty. The article is published in the author's wording.
Keywords: subword complexes, Coxeter groups, nil-Hecke monoids.
@article{MAIS_2013_20_6_a9,
     author = {M. A. Gorsky},
     title = {Subword {Complexes} and {Nil-Hecke} {Moves}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/}
}
TY  - JOUR
AU  - M. A. Gorsky
TI  - Subword Complexes and Nil-Hecke Moves
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 121
EP  - 128
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/
LA  - en
ID  - MAIS_2013_20_6_a9
ER  - 
%0 Journal Article
%A M. A. Gorsky
%T Subword Complexes and Nil-Hecke Moves
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 121-128
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/
%G en
%F MAIS_2013_20_6_a9
M. A. Gorsky. Subword Complexes and Nil-Hecke Moves. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 121-128. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/

[1] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005 | MR | Zbl

[2] V. M.Buchstaber, V. D. Volodin, “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari Lattices, and Related Structures, Tamari Memorial Festschrift, Progress in Mathematics, 299, 2012, 161–186 | Zbl

[3] C. Ceballos, J. P. Labbé, C. Stump, “Subword complexes, cluster complexes, and generalized multi-associahedra”, Journal of Algebraic Combinatoric, 2011 (to appear) , arXiv: 1108.1776 | MR

[4] S. Fomin, A. Zelevinsky, “Y-systems and generalized associahedra”, Annals of Math., 158 (2003), 977–1018 | DOI | MR | Zbl

[5] M. A. Gorsky, Subword complexes and edge subdivisions, arXiv: 1305.5499

[6] A. Knutson, E. Miller, “Groebner geometry of Schubert polynomials”, Ann. of Math. (2), 161:3 (2005), 1245–1318 | DOI | MR | Zbl

[7] A. Knutson, E. Miller, “Subword complexes in Coxeter groups”, Advances in Mathematics, 184:1 (2004), 161–176 | DOI | MR | Zbl

[8] V. Pilaud, C. Stump, Brick polytopes of spherical subword complexes: A new approach to generalized associahedra, arXiv: 1111.3349