Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_6_a9, author = {M. A. Gorsky}, title = {Subword {Complexes} and {Nil-Hecke} {Moves}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {121--128}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/} }
M. A. Gorsky. Subword Complexes and Nil-Hecke Moves. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 121-128. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a9/
[1] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005 | MR | Zbl
[2] V. M.Buchstaber, V. D. Volodin, “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari Lattices, and Related Structures, Tamari Memorial Festschrift, Progress in Mathematics, 299, 2012, 161–186 | Zbl
[3] C. Ceballos, J. P. Labbé, C. Stump, “Subword complexes, cluster complexes, and generalized multi-associahedra”, Journal of Algebraic Combinatoric, 2011 (to appear) , arXiv: 1108.1776 | MR
[4] S. Fomin, A. Zelevinsky, “Y-systems and generalized associahedra”, Annals of Math., 158 (2003), 977–1018 | DOI | MR | Zbl
[5] M. A. Gorsky, Subword complexes and edge subdivisions, arXiv: 1305.5499
[6] A. Knutson, E. Miller, “Groebner geometry of Schubert polynomials”, Ann. of Math. (2), 161:3 (2005), 1245–1318 | DOI | MR | Zbl
[7] A. Knutson, E. Miller, “Subword complexes in Coxeter groups”, Advances in Mathematics, 184:1 (2004), 161–176 | DOI | MR | Zbl
[8] V. Pilaud, C. Stump, Brick polytopes of spherical subword complexes: A new approach to generalized associahedra, arXiv: 1111.3349