Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 103-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes that the rank of a regular polygonal complex in $\mathbb{E}^3$ cannot exceed $4$, and that the only regular polygonal complexes of rank $4$ in $\mathbb{E}^3$ are the eight regular $4$-apeirotopes in $\mathbb{E}^3$. The article is published in the author's wording.
Keywords: polygonal complex, abstract polytopes, regularity.
@article{MAIS_2013_20_6_a7,
     author = {Egon Schulte},
     title = {Regular {Polygonal} {Complexes} of {Higher} {Ranks} in $\mathbb{E}^3$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a7/}
}
TY  - JOUR
AU  - Egon Schulte
TI  - Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 103
EP  - 110
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a7/
LA  - en
ID  - MAIS_2013_20_6_a7
ER  - 
%0 Journal Article
%A Egon Schulte
%T Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 103-110
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a7/
%G en
%F MAIS_2013_20_6_a7
Egon Schulte. Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 103-110. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a7/