Relaxation Cycles in a Generalized Neuron Model with Two Delays
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 179-199

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differential-difference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.
Keywords: difference-differential equations, relaxation cycle, sustained waves, stability, buffering, bursting-effect.
@article{MAIS_2013_20_6_a16,
     author = {S. D. Glyzin and E. A. Marushkina},
     title = {Relaxation {Cycles} in a {Generalized} {Neuron} {Model} with {Two} {Delays}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {179--199},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - E. A. Marushkina
TI  - Relaxation Cycles in a Generalized Neuron Model with Two Delays
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 179
EP  - 199
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/
LA  - ru
ID  - MAIS_2013_20_6_a16
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A E. A. Marushkina
%T Relaxation Cycles in a Generalized Neuron Model with Two Delays
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 179-199
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/
%G ru
%F MAIS_2013_20_6_a16
S. D. Glyzin; E. A. Marushkina. Relaxation Cycles in a Generalized Neuron Model with Two Delays. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 179-199. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/