Relaxation Cycles in a Generalized Neuron Model with Two Delays
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 179-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differential-difference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.
Keywords: difference-differential equations, relaxation cycle, sustained waves, stability, buffering, bursting-effect.
@article{MAIS_2013_20_6_a16,
     author = {S. D. Glyzin and E. A. Marushkina},
     title = {Relaxation {Cycles} in a {Generalized} {Neuron} {Model} with {Two} {Delays}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {179--199},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - E. A. Marushkina
TI  - Relaxation Cycles in a Generalized Neuron Model with Two Delays
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 179
EP  - 199
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/
LA  - ru
ID  - MAIS_2013_20_6_a16
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A E. A. Marushkina
%T Relaxation Cycles in a Generalized Neuron Model with Two Delays
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 179-199
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/
%G ru
%F MAIS_2013_20_6_a16
S. D. Glyzin; E. A. Marushkina. Relaxation Cycles in a Generalized Neuron Model with Two Delays. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 179-199. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a16/

[1] T. R. Chay, J. Rinzel, “Bursting, beating, and chaos in an excitable membrane model”, Biophys. J., 47:3 (1985), 357–366 | DOI

[2] G. B. Ermentrout, N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation”, SIAM J. Appl. Math., 46:2 (1986), 233–253 | DOI | MR | Zbl

[3] E. Izhikevich, “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266 | DOI | MR | Zbl

[4] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78 (2006), 1213–1265 | DOI

[5] S. Coombes, P. C. Bressloff, Bursting: the genesis of rhythm in the nervous system, World Scientific Publishing Company, 2005 | MR | Zbl

[6] A. L. Hodgkin, A. F. Huxley, “Action potentials recorded from inside a nerve fiber”, Nature, 144 (1939), 710–711 | DOI

[7] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117 (1952), 500–544

[8] Kashchenko S. A., Mayorov V. V., Modeli volnovoy pamyati, Knizhnyy dom «LIBROKOM», M., 2009, 288 pp. (in Russian)

[9] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl

[10] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Extremal dynamics of the generalized Hutchinson equation”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 71–83 | DOI | MR | Zbl

[11] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems, I”, Differential Equations, 47:7 (2011), 927–941 | MR | Zbl

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems, II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl

[13] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems, III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl

[14] Glyzin S. D., “Relaxation oscillations of electrically coupled neuron-like systems with delay”, Modeling and Analysis of Information Systems, 17:2 (2010), 28–47 (in Russian)

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the Bursting Effect in Neuron Systems”, Mathematical Notes, 93:5 (2013), 676–-690 | DOI | DOI | Zbl

[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 2:5 (2012), 702–719 | DOI | MR | Zbl

[17] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Relay with delay and its $C^1$-approximation”, Dynamical systems and related topics. Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl