Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 149-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to the problem of calculations of volumes in the Lobachevsky space, and we apply this method to tetrahedra. Using some integral formulas, we present an explicit formula for the volume of a tetrahedron in the function of the coordinates of its vertices as well as in the function of its edge lengths. Finally, we give a direct analitic proof of the famous Schläfli formula for tetrahedra.
Keywords: Lobachevsky space, integral formula, Schläfli formula.
Mots-clés : tetrahedron, volume
@article{MAIS_2013_20_6_a13,
     author = {I. Kh. Sabitov},
     title = {Hyperbolic {Tetrahedron:} {Volume} {Calculation} with {Application} to the {Proof} of the {Schl\"afli} {Formula}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 149
EP  - 161
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/
LA  - ru
ID  - MAIS_2013_20_6_a13
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 149-161
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/
%G ru
%F MAIS_2013_20_6_a13
I. Kh. Sabitov. Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 149-161. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/

[1] N. V. Abrosimov, A. D. Mednykh, “Volumes of polytops in spaces of constant curvature”, Fields Institut Communications, 2013 (to appear) , arXiv: 1302.4919

[2] I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505 | DOI | DOI | MR | Zbl

[3] I. Kh. Sabitov, “On an approach to the calculation of volumes in spaces of constant curvature”, Geometry, Topology and Applications, Yaroslavl Intrernatinal Conference, Abstracts (September 23–27, 2013), Yaroslavl, 2013, 98–100

[4] Sabitov I. Kh., “Ob odnom metode vychisleniya obyomov v prostranstvah postoyannoi krivizny”, Crimea International Mathematical Conference, Book of Abstracts (Sudak, Ukraine, September 22—October 4, 2013), v. 2, Sudak, 2013, 77–78 (in Russian)

[5] Sabitov I. Kh., “Ob odnom metode vychisleniya obyemov tel”, Sibirskie elektronnye matematicheskie izvestiya, 10 (2013), 615–626 (in Russian)

[6] J. Murakami, A. Ushijima, “A volume formula for hyperbolic tetrahedral in terms of edge lengths”, Journal of Geometry, 83:1–2 (2005), 153—163 | DOI | MR | Zbl