Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 149-161

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to the problem of calculations of volumes in the Lobachevsky space, and we apply this method to tetrahedra. Using some integral formulas, we present an explicit formula for the volume of a tetrahedron in the function of the coordinates of its vertices as well as in the function of its edge lengths. Finally, we give a direct analitic proof of the famous Schläfli formula for tetrahedra.
Keywords: Lobachevsky space, integral formula, Schläfli formula.
Mots-clés : tetrahedron, volume
@article{MAIS_2013_20_6_a13,
     author = {I. Kh. Sabitov},
     title = {Hyperbolic {Tetrahedron:} {Volume} {Calculation} with {Application} to the {Proof} of the {Schl\"afli} {Formula}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 149
EP  - 161
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/
LA  - ru
ID  - MAIS_2013_20_6_a13
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 149-161
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/
%G ru
%F MAIS_2013_20_6_a13
I. Kh. Sabitov. Hyperbolic Tetrahedron: Volume Calculation with Application to the Proof of the Schl\"afli Formula. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 149-161. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a13/