A Definition of Type Domain of a Parallelotope
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 129-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Each convex polytope $P=P(\alpha)$ can be described by a set of linear inequalities determined by vectors $p$ and right hand sides $\alpha(p)$. For a fixed set of vectors $p$, a type domain ${\mathcal D}(P_0)$ of a polytope $P_0$ and, in particular, of a parallelotope $P_0$ is defined as a set of parameters $\alpha(p)$ such that polytopes $P(\alpha)$ have the same combinatorial type as $P_0$ for all $\alpha\in{\mathcal D}(P_0)$. In the second part of the paper, a facet description of zonotopes and zonotopal parallelotopes are given. The article is published in the author's wording.
Keywords: parallelotope, zonotope.
Mots-clés : type domain
@article{MAIS_2013_20_6_a10,
     author = {V. P. Grishukhin},
     title = {A {Definition} of {Type} {Domain} of a {Parallelotope}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a10/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - A Definition of Type Domain of a Parallelotope
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 129
EP  - 134
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a10/
LA  - en
ID  - MAIS_2013_20_6_a10
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T A Definition of Type Domain of a Parallelotope
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 129-134
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a10/
%G en
%F MAIS_2013_20_6_a10
V. P. Grishukhin. A Definition of Type Domain of a Parallelotope. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 129-134. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a10/