The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 158-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of three unidirectionally coupled singularly perturbed scalar nonlinear differential-difference equations with two delays that simulate the electrical activity of the ring neural associations. It is assumed that for each equation at critical values of the parameters there is a case of an infinite dimensional degeneration. Further, we constructed a quasi-normal form of this system, provided that the bifurcation parameters are close to the critical values and the coupling coefficient is suitably small. In analyzing this quasi-normal form, we can state on the base of the accordance theorem, that any preassigned finite number of stable periodic motions can co-exist in the original system under the appropriate choice of the parameters in the phase space.
Keywords: differential-difference equation, buffering.
Mots-clés : bifurcation, quasinormal form
@article{MAIS_2013_20_5_a9,
     author = {A. S. Bobok and S. D. Glyzin and A. Yu. Kolesov},
     title = {The {Quasi-Normal} {Form} of a {System} of {Three} {Unidirectionally} {Coupled} {Singularly} {Perturbed} {Equations} with {Two} {Delays}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {158--167},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a9/}
}
TY  - JOUR
AU  - A. S. Bobok
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 158
EP  - 167
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a9/
LA  - ru
ID  - MAIS_2013_20_5_a9
ER  - 
%0 Journal Article
%A A. S. Bobok
%A S. D. Glyzin
%A A. Yu. Kolesov
%T The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 158-167
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a9/
%G ru
%F MAIS_2013_20_5_a9
A. S. Bobok; S. D. Glyzin; A. Yu. Kolesov. The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 158-167. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a9/

[1] A. B. Vasil'yeva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Mathematics of the USSR-Sbornik, 58:2 (1987), 491–503 | DOI | MR

[2] Yu. S. Kolesov, “Method of quasinormal forms in the problem of steady-state conditions for parabolic systems with small diffusion”, Ukrainian Mathematical Journal, 39:1 (1987), 21–26 | DOI | MR | Zbl

[3] Kashchenko S. A., “Normalization Techniques as Applied to the Investigation of Dynamics of Difference-Differential Equations with a Small Parameter Multiplying the Derivative”, Differ. Uravn., 25 (1989), 1448–1451 (in Russian) | MR

[4] S. A. Kashchenko, “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Computational Mathematics and Mathematical Physics, 38:3 (1998), 443–451 | MR | Zbl

[5] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Chaos phenomena in a circle of three unidirectionally connected oscillators”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1724–1736 | DOI | MR

[6] Glyzin S. D., “The dynamics of the normal form of the system of three coupled differential autogenerators”, Modeling and Analysis of Information Systems, 13:1 (2006), 49–57 (in Russian) | MR

[7] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “A mathematical model of the chaotic buffer phenomenon”, Doklady mathematics, 75:1 (2007), 157–161 | DOI | MR

[8] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Modeling and Analysis of Information Systems, 14:3 (2007), 29–42 (in Russian) | MR

[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Extremal dynamics of the generalized Hutchinson equation”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 71–83 | DOI | MR | Zbl

[10] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the Bursting Effect in Neuron Systems”, Mathematical Notes, 93:5 (2013), 676–690 | DOI | DOI | Zbl

[11] Glyzin S. D., Ovsyannikova E. O., “Quasi-periodic oscillations of a neuron equation with two delays”, Modeling and Analysis of Information Systems, 18:1 (2011), 86–105 (in Russian)

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Buffer phenomenon in neurodynamics”, Doklady mathematics, 85:2 (2012), 297–300 | DOI | MR | Zbl

[13] Kashchenko S. A., Mayorov V. V., Modeli volnovoy pamyati, Knizhnyy dom «LIBROKOM», M., 2009, 288 pp. (in Russian)

[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems”, Analysis and singularities, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, v. 2, Proceedings of the Steklov Institute of Mathematics, 259, 2007, 101–127 | DOI | MR | Zbl

[15] Kolesov A. Yu., Rozov N. Kh., Invariantnyye tory nelineynykh volnovykh uravneniy, Fizmatlit, M., 2004 (in Russian)