The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 148-157

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a problem of a number of lattice plane tilings by given area polyominoes. A polyomino is a connected plane geometric figure formed by joining edge to edge a finite number of unit squares. A tiling is a lattice tiling if each tile can be mapped to any other tile by translation which maps the whole tiling to itself. Let $T(n)$ be a number of lattice plane tilings by given area polyominoes such that its translation lattice is a sublattice of $\mathbb{Z}^2$. It is proved that $2^{n-3}+2^{[\frac{n-3}{2}]}\leq T(n)\leq C(n+1)^3(2.7)^{n+1}$. In the proof of a lower bound we give an explicit construction of required lattice plane tilings. The proof of an upper bound is based on a criterion of the existence of lattice plane tiling by polyomino and on the theory of self-avoiding walk. Also, it is proved that almost all polyominoes that give lattice plane tilings have sufficiently large perimeters.
Keywords: tilings, polyomino.
@article{MAIS_2013_20_5_a8,
     author = {A. V. Shutov and E. V. Kolomeykina},
     title = {The {Estimation} of the {Number} of {Lattice} {Tilings} of a {Plane} by a {Given} {Area} {Polyomino}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {148--157},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a8/}
}
TY  - JOUR
AU  - A. V. Shutov
AU  - E. V. Kolomeykina
TI  - The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 148
EP  - 157
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a8/
LA  - ru
ID  - MAIS_2013_20_5_a8
ER  - 
%0 Journal Article
%A A. V. Shutov
%A E. V. Kolomeykina
%T The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 148-157
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a8/
%G ru
%F MAIS_2013_20_5_a8
A. V. Shutov; E. V. Kolomeykina. The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 148-157. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a8/