Exact Values of Widths of Some Functional Classes in $L_{2}$ and Minimization of the Constants in Inequalities of Jackson--Stechkin Type
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 106-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is considered the extremal problem of finding the exact constants in inequalities of Jackson–Stechkin type between the best approximations of periodic differentiable functions $f\in L_{2}^{(r)}[0,2\pi]$ by trigonometric polynomials, and the average values with a positive weight $\varphi$ moduli of continuity of $m$th order $\omega_{m}(f^{(r)}, t),$ belonging to the space $L_{p},\, 0$. In particular, the problem of minimizing the constants in these inequalities over all subspaces of dimension $n,$ raised by N. P. Korneychuk, is solved. For some classes of functions defined by the specified moduli of continuity, the exact values of $n$-widths of class \begin{equation*} L_{2}^{(r)}(m,p,h;\varphi):=\left\{f\in L_{2}^{(r)}: \left(\int\limits_{0}^{h}\omega_{m}^{p}(f^{(r)};t)_{2}\,\varphi(t)dt\right)^{1/p} \hspace{-1.7mm}\left(\int\limits_{0}^{h}\varphi(t)dt\right)^{-1/p}\le1\right\} \end{equation*} are found in the Hilbert space $L_2,$ and the extreme subspace is identified. In this article, the results are shown which are the extension and the generalization of some earlier results obtained in this line of investigation.
Keywords: best approximations, module of continuity of $m$th order, $n$-widths.
@article{MAIS_2013_20_5_a6,
     author = {G. A. Yusupov},
     title = {Exact {Values} of {Widths} of {Some} {Functional} {Classes} in $L_{2}$ and {Minimization} of the {Constants} in {Inequalities} of {Jackson--Stechkin} {Type}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {106--116},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a6/}
}
TY  - JOUR
AU  - G. A. Yusupov
TI  - Exact Values of Widths of Some Functional Classes in $L_{2}$ and Minimization of the Constants in Inequalities of Jackson--Stechkin Type
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 106
EP  - 116
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a6/
LA  - ru
ID  - MAIS_2013_20_5_a6
ER  - 
%0 Journal Article
%A G. A. Yusupov
%T Exact Values of Widths of Some Functional Classes in $L_{2}$ and Minimization of the Constants in Inequalities of Jackson--Stechkin Type
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 106-116
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a6/
%G ru
%F MAIS_2013_20_5_a6
G. A. Yusupov. Exact Values of Widths of Some Functional Classes in $L_{2}$ and Minimization of the Constants in Inequalities of Jackson--Stechkin Type. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 106-116. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a6/

[1] L. V. Taikov, “Structural and constructive characteristics of function from $L_2$”, Matematicheskie Zametki, 25:2 (1979), 217–223 | MR | Zbl

[2] A. A. Ligun, “Exact inequalities of Jackson type for periodic functions in space $L_{2}$”, Matematicheskie Zametki, 43:6 (1988), 757–769 | MR | Zbl

[3] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Junga v prostranstvah $L_{p}$, Tul'skiy gosudarstvennyj universitet, Tula, 1995 (in Russian)

[4] M. G. Esmaganbetov, “Widths of classes from $L_{2}[0,2\pi]$ and the minimization of exact constants in Jackson-type inequalities”, Matematicheskie Zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl

[5] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “The Jackson–Stechkin inequality in $L_{2}$ with a trigonometric modulus of continuity”, Matematicheskie Zametki, 65:6 (1999), 777–781 | DOI | MR | Zbl

[6] S. B. Vakarchuk, “Exact constants in Jackson-type inequalities and exact values of widths”, Matematicheskie Zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[7] S. B. Vakarchuk, “Jackson-type inequalities and widths of function classes in $L_{2}$”, Matematicheskie Zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[8] M. Sh. Shabozov, “Widths of classes periodical differentiable functions in $L_2[0,2\pi]$”, Matematicheskie Zametki, 87:4 (2010), 616–623 | DOI | MR | Zbl

[9] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximations in $L_{2}$ of classes of $2\pi$-periodic functions and exact values of their widths”, Matematicheskie Zametki, 90:5 (2011), 764–775 | DOI | MR

[10] M. Sh. Shabozov, G. A. Yusupov, “Widths of certain classes of periodic functions in $L_2$”, Journal of Approximation Theory, 164:1 (2012), 869–878 | DOI | MR | Zbl

[11] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenij, Moskovskij gosudarstvennyj universitet, M., 1976, in Russian pp. | MR

[12] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR | Zbl

[13] Encyclopedia Math. Appl., 38, Cambridge Univ. Press, Cambridge, 1991 | MR | MR