The Exact Inequalities of Jackson--Stechkin Type and the Width Values for Some Classes of Functions in $L_{2}$ Space
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 90-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some exact inequalities between the best approximations of periodic differentiable functions with trigonometric polynomials and generalized moduli of the continuity $\Omega_{m}$ of $m$-th order in $L_{2}[0,2\pi]$ space are found. Similar averaged characteristics of function smoothness in studying the important problems in the constructive theory of functions were considered by K. V. Runovskiy, E. A. Strogenko, V. G. Krotov, P. Osvald and many others. For some classes of functions defined by indicated moduli of continuity where the $r$-th derivatives are bounded by functions which satisfy certain constraints were obtained the exact values of Bernstein, Gelfand, Kolmogorov, linear and projection $n$-widths. Here is given an example of a majorant for which all the stated claims are fulfilled.
Keywords: best approximation, generalized modulus of continuity, extremal characteristics, $n$-widths.
@article{MAIS_2013_20_5_a5,
     author = {M. R. Langarshoev},
     title = {The {Exact} {Inequalities} of {Jackson--Stechkin} {Type} and the {Width} {Values} for {Some} {Classes} of {Functions} in $L_{2}$ {Space}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {90--105},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a5/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - The Exact Inequalities of Jackson--Stechkin Type and the Width Values for Some Classes of Functions in $L_{2}$ Space
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 90
EP  - 105
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a5/
LA  - ru
ID  - MAIS_2013_20_5_a5
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T The Exact Inequalities of Jackson--Stechkin Type and the Width Values for Some Classes of Functions in $L_{2}$ Space
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 90-105
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a5/
%G ru
%F MAIS_2013_20_5_a5
M. R. Langarshoev. The Exact Inequalities of Jackson--Stechkin Type and the Width Values for Some Classes of Functions in $L_{2}$ Space. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 90-105. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a5/

[1] N. I. Chernykh, “Best approximation of periodic functions by trigonometric polynomials in $L_{2}$”, Mathtmatical notes, 2:5 (1967), 803–808 | DOI

[2] Berdyshev V. I., “O teoreme Dzheksona v $L_{p}$”, Trudy MIAN SSSR, 88, 1967, 3–16 (in Russian) | MR | Zbl

[3] L. V. Taikov, “Inequalities containing best approximations and the modulus of continuity of functions in $L_{2}$”, Mathematical notes, 20:3 (1976), 797–800 | DOI | MR | Zbl

[4] A. A. Ligun, “Some inequalities between best approximations and moduli of continuity in an $L_{2}$ space”, Mathematical notes, 24:6 (1978), 917–921 | DOI | MR | Zbl

[5] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_{p}$, TulGU, Tula, 1995, 192 pp. (in Russian)

[6] S. B. Vakarchuk, “Jackson-type inequalities and widths of function classes in $L_{2}$”, Mathematical notes, 80:1–2 (2006), 11–18 | DOI | DOI | MR | Zbl

[7] M. Sh. Shabozov, “Widths of classes of periodic differentiable functions in the space $L_{2}[0, 2\pi]$”, Mathematical notes, 87:3–4 (2010), 575–581 | DOI | DOI | MR | Zbl

[8] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximations in $L_2$ of classes of $2\pi$-periodic functions and exact values of their widths”, Mathematical notes, 90:5–6 (2011), 748–757 | DOI | DOI | MR

[9] M. Sh. Shabozov, S. B. Vakarchuk, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami i tochnykh znacheniyakh poperechnikov funktsionalnykh klassov v $L_{2}$”, Analysis Mathematica, 38 (2012), 147–159 | DOI | MR | Zbl

[10] S. B. Vakarchuk, “Exact Constants in Jackson-type Inequalities and Exact Values of Widths”, Mathematical notes, 78:5–6 (2005), 735–739 | DOI | DOI | MR | Zbl

[11] Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I., “Tochnye neravenstva tipa Dzheksona dlya $2\pi$-periodicheskikh funktsiy v prostranstve $L_{2}$ i poperechniki nekotorykh funktsional'nykh klassov”, DAN resp. Tadzh., 54:1 (2011), 5–12 (in Russian)

[12] Storozhenko E. A., Krotov V. G., Osval'd P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_{p}$, $0

1$”, Matematicheskiy sbornik, 98:140 (1975), 395–415 (in Russian) | MR | Zbl

[13] Runovskiy K. V., “O priblizhenii semeystvami lineynykh polinomial'nykh operatorov v prostranstvakh $L_{p}$, $0

1$”, Matematicheskiy sbornik, 185:8 (1994), 81–102 (in Russian) | MR

[14] V. A. Abilov, F. V. Abilova, “Problems in the Approximation of $2\pi$-Periodic Functions by Fourier Sums in the Space $L_2 (2\pi)$”, Mathematical notes, 76:5–6 (2004), 749–757 | DOI | DOI | MR | Zbl

[15] Shabozov M. Sh., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya $n$-poperechnikov nekotorykh klassov funktsiy iz $L_{2}$”, Izv. AN Resp. Tadzhikistan, otd. fiz-mat., khim., geol. i tekhn. nauk, 2010, no. 4(141), 7–24 (in Russian)

[16] Shabozov M. Sh., Yusupov G. A., “Tochnye konstanty v neravenstve tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsiy v $L_{2}$”, Sibirskiy matem. zhurn., 52:6 (2011), 936–948 (in Russian) | MR

[17] S. B. Vakarchuk, V. I. Zabutnaya, “Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_{2}$”, Mathematical notes, 92:3–4 (2012), 458–472 | DOI | DOI | Zbl

[18] Korneychuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. (in Russian) | MR

[19] Tikhomirov V. M., Nekotorye voprosy teorii priblizheniy, MGU, M., 1976, 325 pp. (in Russian) | MR

[20] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985, 292 pp. | MR | Zbl