An Algorithm of $(n,t)$-Threshold Proxy Signature with an Arbitrator
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 4, pp. 55-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an $(n,t)$-threshold proxy signature scheme with an Arbitrator which enables an original signer to delegate the signature authority to sign a message on behalf of the original signer to proxy group $\frak P$ of n members. The original signer distributes the proxy key among the proxy group members in such a way that not less then $t$ proxy signers and the Arbitrator can cooperatively sign messages on behalf of the original signer. Thus, for signing the document it is necessary to have agreements of not less then $t$ members. The Arbitrator is a trusted third party. It receives the information from the $t$ members and completes the calculation of the digital signature. A verifier can identify the original signer and the members of the proxy group $\frak P$. The main feature is that $n$ members of the proxy group can not calculate the proxy key and the original signer's secret key.
Keywords: proxy signature, threshold proxy signature, secret sharing.
@article{MAIS_2013_20_4_a3,
     author = {E. A. Tolyupa},
     title = {An {Algorithm} of $(n,t)${-Threshold} {Proxy} {Signature} with an {Arbitrator}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a3/}
}
TY  - JOUR
AU  - E. A. Tolyupa
TI  - An Algorithm of $(n,t)$-Threshold Proxy Signature with an Arbitrator
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 55
EP  - 70
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a3/
LA  - ru
ID  - MAIS_2013_20_4_a3
ER  - 
%0 Journal Article
%A E. A. Tolyupa
%T An Algorithm of $(n,t)$-Threshold Proxy Signature with an Arbitrator
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 55-70
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a3/
%G ru
%F MAIS_2013_20_4_a3
E. A. Tolyupa. An Algorithm of $(n,t)$-Threshold Proxy Signature with an Arbitrator. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 4, pp. 55-70. http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a3/

[1] M. Mambo, K. Usuda, E. Okamoto, “Proxy signatures: Delegation of the power to sign messages”, IEICE Trans. Fundamentals, E79-A:9 (1996), 1338–1353

[2] M. Mambo, K. Usuda, E. Okamoto, “Proxy signatures for delegating signing operation”, Proc. of 3rd ACM Conference on Computer and Communications Security, CCS’96, ACM Press, 1996, 48–57

[3] S. Kim, S.Park, D. Won, “Proxy signatures, revisited”, Information and Communications Security (ICICS’97), LNCS, 1334, Springer-Verlag, 1997, 223–232 | Zbl

[4] B. Lee, H. Kim, K. Kim, “Strong proxy signature and its applications”, Proceedings of the 2001 Symposium on Cryptography and Information Security, SCIS’01 (Oiso, Japan, Jan. 23–26, 2001), v. 2/2, 603–608 | Zbl

[5] Kostrikin A. I., Vvedenie v algebru. Osnovy algebry, Uchebnik dlya vuzov, Fizmatlit, M., 1994 (in Russian) | Zbl

[6] T. Pedersen, “A Threshold Cryptosystem without a Trusted Party”, Eurocrypt 1991, LNCS, 547, Springer-Verlag, 1991, 522–526

[7] H. M. Sun, “An efficient nonrepudiable threshold proxy signatures with known signers”, Computer Communications, 22(8) (1999), 717–722 | DOI

[8] M.-S. Hwang, I.-C. Lin, K.-F. Lu, “A secure nonrepudiable threshold proxy signature scheme with known signers”, International Journal of Informatica, 11:2 (2000), 1–8

[9] C.-L. Hsu, T.-S. Wu, T.-C. Wu, “New nonrepudiable threshold proxy signature schemem with known signers”, The Journal of Systems and Software, 58 (2001), 119–124 | DOI

[10] C.-Y. Yang, S.-F. Tzeng, M.-S. Hwang, “On the efficiency of nonrepudiable threshold proxy signatures with known signers”, The Journal of Systems and Software, 22:9 (2003), 1–8

[11] S.-F. Tzeng, M.-S. Hwang, C.-Y. Yang, “An improvement of nonrepudiable threshold proxy signature schemem with known signers”, Computers Security, 23 (2004), 174–178 | DOI