Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_3_a7, author = {A. S. Taskin and E. M. Mirkes and N. Y. Sirotinina}, title = {Application of the {Fuzzy} {Classification} for {Linear} {Hybrid} {Prediction} {Methods}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {108--120}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a7/} }
TY - JOUR AU - A. S. Taskin AU - E. M. Mirkes AU - N. Y. Sirotinina TI - Application of the Fuzzy Classification for Linear Hybrid Prediction Methods JO - Modelirovanie i analiz informacionnyh sistem PY - 2013 SP - 108 EP - 120 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a7/ LA - ru ID - MAIS_2013_20_3_a7 ER -
%0 Journal Article %A A. S. Taskin %A E. M. Mirkes %A N. Y. Sirotinina %T Application of the Fuzzy Classification for Linear Hybrid Prediction Methods %J Modelirovanie i analiz informacionnyh sistem %D 2013 %P 108-120 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a7/ %G ru %F MAIS_2013_20_3_a7
A. S. Taskin; E. M. Mirkes; N. Y. Sirotinina. Application of the Fuzzy Classification for Linear Hybrid Prediction Methods. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 108-120. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a7/
[1] S. Haykin, Neural Networks and Learning Machines, Prentice Hall, New York, 2009
[2] A. V. Levitin, Algoritmy: vvedenie v razrabotku i analiz, Vilyams, M., 2006 (in Russian)
[3] H. Motulsky, A. Christopoulos, Fitting models to biological data using linear and non-linear regression. A practical guide to curve fitting, University Press, Oxford, 2004 | Zbl
[4] N. R. Draper, H. Smith, Applied regression analysis, Wiley, New York, 1998 | MR
[5] O. Itskhoki, “Model selection and paradoxes of prediction”, Quantile, 2006, no. 1, 43–51
[6] K. Tondel, U. Indahl, A. Gjuvsland, J. Vik, “Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models”, BMC Systems Biology, 5 (2011), 90 | DOI
[7] G. Camps-Valls, “Cyclosporine concentration prediction using clustering and support vector regression methods”, Electronic Letters, 38:12 (2002), 568–570 | DOI
[8] B. Ari, H. A. Guvenir, “Clustered linear regression”, Knowledge-Based Systems, 15:3 (2002), 169–175 | DOI
[9] A. S. Taskin, S. S. Nevolina, “Primenenie predvaritelnoy klasterizatsii pri zapolnenii probelov v tablitsakh dannykh”, Molodezh i sovremennye informatsionnye tekhnologii, Sbornik trudov VIII Vserossiyskoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh, v. 1, 2010, 223–224 (in Russian)
[10] A. S. Taskin, E. M. Mirkes, “Lineynaya regressiya s klasterizatsiey po priznaku na dannykh s deystvitelnymi velichinami”, Vestnik SibGAU, 3(43) (2012), 71–75 (in Russian)
[11] A. N. Gorban, A. Y. Zinovyev, “Principal Graphs and Manifolds”, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, Ch. 2, IGI Global, Hershey, PA, USA, 2009
[12] G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Applications, SIAM, Philadelphia, ASA, Alexandria, VA, 2007 | MR
[13] T. Abidin, W. Perrizo, “SMART-TV: A Fast and Scalable Nearest Neighbor Based Classifier for Data Mining”, Proceedings of ACM SAC-06, 2006, 536–540
[14] J. Zhang, I. Mani, “kNN approach to unbalanced data distributions: A case study involving Information Extraction”, Workshop on learning from imbalanced datasets II, ICML, 2003
[15] David Arthur, Sergei Vassilvitskii, “k-means++: the advantages of careful seeding”, Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), 2007, 1027–-1035 | MR
[16] A. I. Orlov, Prikladnaya statistika, Ekzamen, M., 2004 (in Russian)
[17] J. Abonyi, J. Feil, Cluster Analysis for Data Mining and System identification, Birkhauser, Basel, 2007 | MR | Zbl