Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A logistic equation with a delay feedback circuit and with periodic perturbation of parameters is considered. The problem parameters (a coefficient of the linear growth and a delay) are chosen close to the critical values at which a cycle is bifurcated from the equilibrium point. We assume that these values have a double-frequency relation to the time, the frequency of action being close to the doubled frequency of the natural vibration. Asymptotic analysis is performed under these assumptions and leads to a two-dimensional system of ordinary differential equations. The linear part of this system is periodic. If the parameter which defines the frequency detuning of the external action is large or small, we can apply standard asymptotic methods to the resulting system. Otherwise, numerical analysis is performed. Using the results of the numerical analysis, we clarify the main scenarios of phase transformations and find the area of chaotic oscillations. The main conclusion is that in case of parametric resonance the dynamics of the problem with double-frequency perturbation is more complicated than the dynamics of the problem with single-frequency perturbation.
Keywords: difference-differential equation, parametric resonance, averaging, normal form, chaotic dynamics.
@article{MAIS_2013_20_3_a5,
     author = {N. D. Bykova and S. D. Glyzin and S. A. Kaschenko},
     title = {Parametric {Resonance} in the {Logistic} {Equation} with {Delay} under a {Two-Frequency} {Perturbation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/}
}
TY  - JOUR
AU  - N. D. Bykova
AU  - S. D. Glyzin
AU  - S. A. Kaschenko
TI  - Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 86
EP  - 98
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/
LA  - ru
ID  - MAIS_2013_20_3_a5
ER  - 
%0 Journal Article
%A N. D. Bykova
%A S. D. Glyzin
%A S. A. Kaschenko
%T Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 86-98
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/
%G ru
%F MAIS_2013_20_3_a5
N. D. Bykova; S. D. Glyzin; S. A. Kaschenko. Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 86-98. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/

[1] V. Volterra, Variazone e fluttuazini del numero d’individui in specie animali conviventi, Mem. Accad. naz. Lincei Ser., 6, 1926 | MR

[2] P. F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement”, Correspondance mathématique et physique, 10 (1838), 113–121

[3] E. M. Wright, “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl

[4] S. A. Kaschenko, “K voprosu ob otsenke v prostranstve parametrov oblasti global'noy ustoychivosti uravneniya Khatchinsona”, Nelineynyye kolebaniya v zadachakh ekologii, 1985, 55–62, YarGU, Yaroslavl (in Russian)

[5] S. A. Kaschenko, “Asymptotic of solutions of generalized Hutchinson's equation”, Modeling and Analysis of Information Systems, 19:3 (2012), 32–62 (in Russian)

[6] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964, 612 pp. | MR | MR | Zbl

[7] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977, 366 pp. | MR | MR | Zbl

[8] Jianhong Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996, 442 pp. | MR | Zbl

[9] Kuang Yang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, 1993, 398 pp. | MR

[10] S. A. Kaschenko, Yu. S. Kolesov, “Raskachivanie «kacheley» pri pomoschi dvuhchastotnoy sily”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1980, 79–131 (in Russian)

[11] S. A. Kashchenko, Yu. S. Kolesov, “Parametric resonance in systems with delay under a two-frequency perturbation”, Siberian Mathematical Journal, 21:2 (1980), 231–235 | DOI | MR | Zbl

[12] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskih sistem na ploskosti, Nauka, M., 1990, 488 pp. (in Russian) | MR | Zbl

[13] A. B. Vasil'eva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenij singulyarno vozmushhennyh uravnenij, Nauka, M., 1973, 272 pp. (in Russian) | MR

[14] S. A. Kaschenko, “Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey”, Trudy seminara Petrovskogo, 15, 1991, 128–155 (in Russian)

[15] A. M. Il'in, A. S. Kalashnikov, O. A. Oleinik, “Linear equations of the second order of parabolic type”, Russian Mathematical Surveys, 17:3 (1962), 1–143 | DOI | MR

[16] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961, 573 pp. | MR | MR

[17] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, AMS, 42, Springer-Verlag, New York, 1983, 459 pp. | MR | Zbl

[18] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl