Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_3_a5, author = {N. D. Bykova and S. D. Glyzin and S. A. Kaschenko}, title = {Parametric {Resonance} in the {Logistic} {Equation} with {Delay} under a {Two-Frequency} {Perturbation}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {86--98}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/} }
TY - JOUR AU - N. D. Bykova AU - S. D. Glyzin AU - S. A. Kaschenko TI - Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation JO - Modelirovanie i analiz informacionnyh sistem PY - 2013 SP - 86 EP - 98 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/ LA - ru ID - MAIS_2013_20_3_a5 ER -
%0 Journal Article %A N. D. Bykova %A S. D. Glyzin %A S. A. Kaschenko %T Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation %J Modelirovanie i analiz informacionnyh sistem %D 2013 %P 86-98 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/ %G ru %F MAIS_2013_20_3_a5
N. D. Bykova; S. D. Glyzin; S. A. Kaschenko. Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 86-98. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a5/
[1] V. Volterra, Variazone e fluttuazini del numero d’individui in specie animali conviventi, Mem. Accad. naz. Lincei Ser., 6, 1926 | MR
[2] P. F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement”, Correspondance mathématique et physique, 10 (1838), 113–121
[3] E. M. Wright, “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl
[4] S. A. Kaschenko, “K voprosu ob otsenke v prostranstve parametrov oblasti global'noy ustoychivosti uravneniya Khatchinsona”, Nelineynyye kolebaniya v zadachakh ekologii, 1985, 55–62, YarGU, Yaroslavl (in Russian)
[5] S. A. Kaschenko, “Asymptotic of solutions of generalized Hutchinson's equation”, Modeling and Analysis of Information Systems, 19:3 (2012), 32–62 (in Russian)
[6] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964, 612 pp. | MR | MR | Zbl
[7] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977, 366 pp. | MR | MR | Zbl
[8] Jianhong Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996, 442 pp. | MR | Zbl
[9] Kuang Yang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, 1993, 398 pp. | MR
[10] S. A. Kaschenko, Yu. S. Kolesov, “Raskachivanie «kacheley» pri pomoschi dvuhchastotnoy sily”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1980, 79–131 (in Russian)
[11] S. A. Kashchenko, Yu. S. Kolesov, “Parametric resonance in systems with delay under a two-frequency perturbation”, Siberian Mathematical Journal, 21:2 (1980), 231–235 | DOI | MR | Zbl
[12] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskih sistem na ploskosti, Nauka, M., 1990, 488 pp. (in Russian) | MR | Zbl
[13] A. B. Vasil'eva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenij singulyarno vozmushhennyh uravnenij, Nauka, M., 1973, 272 pp. (in Russian) | MR
[14] S. A. Kaschenko, “Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey”, Trudy seminara Petrovskogo, 15, 1991, 128–155 (in Russian)
[15] A. M. Il'in, A. S. Kalashnikov, O. A. Oleinik, “Linear equations of the second order of parabolic type”, Russian Mathematical Surveys, 17:3 (1962), 1–143 | DOI | MR
[16] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961, 573 pp. | MR | MR
[17] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, AMS, 42, Springer-Verlag, New York, 1983, 459 pp. | MR | Zbl
[18] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl