Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_3_a4, author = {M. V. Nevskii}, title = {On {Some} {Problem} for a {Simplex} and a {Cube} in ${\mathbb R}^n$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {77--85}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a4/} }
M. V. Nevskii. On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 77-85. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a4/
[1] M. V. Nevskij, “Minimal projections and largest simplices”, Modeling and Analysis of Information Systems, 14:1 (2007), 3–10 (in Russian)
[2] M. V. Nevskii, “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl
[3] M. V. Nevskii, “On the axial diameters of a convex body”, Math. Notes, 90:2 (2011), 295–298 | DOI | DOI | MR | Zbl
[4] M. V. Nevskii, Geometricheskie ocenki v polinomialnoi interpolyacii, YarGU, Yaroslavl, 2012, 218 pp. (in Russian)
[5] M. V. Nevskii, “On the minimal positive homothetic image of a simplex containing a convex body”, Math. Notes, 93:3 (2013), 112–120 | DOI | MR | Zbl
[6] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl
[7] M. Nevskii, “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl
[8] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl
[9] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl