Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_3_a2, author = {S. D. Glyzin and P. L. Shokin}, title = {Diffusion {Chaos} in {Reaction} -- {Diffusion} {Boundary} {Problem} in the {Dumbbell} {Domain}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {43--57}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a2/} }
TY - JOUR AU - S. D. Glyzin AU - P. L. Shokin TI - Diffusion Chaos in Reaction -- Diffusion Boundary Problem in the Dumbbell Domain JO - Modelirovanie i analiz informacionnyh sistem PY - 2013 SP - 43 EP - 57 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a2/ LA - ru ID - MAIS_2013_20_3_a2 ER -
%0 Journal Article %A S. D. Glyzin %A P. L. Shokin %T Diffusion Chaos in Reaction -- Diffusion Boundary Problem in the Dumbbell Domain %J Modelirovanie i analiz informacionnyh sistem %D 2013 %P 43-57 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a2/ %G ru %F MAIS_2013_20_3_a2
S. D. Glyzin; P. L. Shokin. Diffusion Chaos in Reaction -- Diffusion Boundary Problem in the Dumbbell Domain. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 43-57. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a2/
[1] A. M. Turing, “The Chemical Basis of Morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237:641, Aug. 14 (1952), 37–72 | DOI
[2] G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium Systems, Wiley, 1977 | MR | Zbl
[3] Y. Kuramoto, “Diffusion-Induced Chaos in Reaction Systems”, Prog. Theor. Phys. Supplement, 64 (1978), 346–367 | DOI
[4] J. M. Arrieta, “Neumann eigenvalue problems on exterior perturbations of the domain”, Journal of Differential Equations, 118:1 (1995), 54–103 | DOI | MR | Zbl
[5] J. M. Arrieta, “Rates of Eigenvalues on a Dumbbell Domain. Simple Eigenvalue Case”, Transactions of the American Mathematical Society, 347:9, Sep. (1995), 3503–3531 | DOI | MR | Zbl
[6] J. M. Arrieta, A. N. Carvalho, G. Lozada-Cruz, “Dynamics in dumbbell domains. I: Continuity of the set of equilibria”, Journal of Differential Equations, 231:2 (2006), 551–597 | DOI | MR | Zbl
[7] J. M. Arrieta, A. N. Carvalho, G. Lozada-Cruz, “Dynamics in dumbbell domains. II: The limiting problem”, Journal of Differential Equations, 247:1 (2009), 174–202 | DOI | MR | Zbl
[8] J. M. Arrieta, A. N. Carvalho, G. Lozada-Cruz, “Dynamics in dumbbell domains. III: Continuity of attractors”, Journal of Differential Equations, 247:1 (2009), 225–259 | DOI | MR | Zbl
[9] A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Mathematics of the USSR-Sbornik, 58:2 (1987), 491–503 | DOI | MR
[10] J. R. Dormand, P. J. Prince, “A Family of Embedded Runge–Kutta Formulae”, J. Comp. Appl. Math., 6 (1980), 19–26 | DOI | MR | Zbl
[11] V. I. Oseledec, “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems”, Trudy Moskov. Mat. Obs., 19, 1968, 179–210 (in Russian) | Zbl
[12] G. Benettin, L. Galgani, J. M. Strelcyn, “Kolmogorov entropy and numerical experiments”, Phys. Rev. A, 14 (1976), 2338–2345 | DOI
[13] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, “Determining Lyapunov exponents from a time series”, Physica D, 16 (1985), 285–317 | DOI | MR | Zbl
[14] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl
[15] P. Frederickson, J. Kaplan, J. Yorke, “The Lyapunov dimension of strange attractors”, J. Different. Equat., 49:2 (1983), 185–207 | DOI | MR | Zbl
[16] S. D. Glyzin, “Difference approximations of “reaction – diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)
[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl
[18] S. D. Glyzin, “Dimensional Characteristics of Diffusion Chaos”, Modeling and Analysis of Information Systems, 20:1 (2013), 30–51 (in Russian)