Spatial Properties of High-Mode Bifurcations of a Distributed Logistic Equation
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 29-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local dynamics of a solutions spatially distributed logistic equation in the case of a two-dimensional spatial variable. Two distribution functions important for applications are considered. It is shown, that the critical cases in the problem of equilibrium stability have an infinite dimention. For each critical case a special replacement is built, which reduces the original problem to a system of parabolic equations — a quasi-normal form, the solutions behavior of which defines the local dynamics. Some of the parameters in the quasi-normal form depend on a small parameter via a discontinuous function $\Theta(\varepsilon)$, which takes an infinite number of times all the values in the interval $[0,1)$ for $\varepsilon\to0$. This gives infinite alternation of forward and backward bifurcations in the initial boundary value problem. The obtained results are compared with those for the case of a one-dimensional spatial variable. New bifurcation phenomena which occur only in the case of a two-dimensional spatial variable are revealed.
Keywords: logistic equation
Mots-clés : spatial distribution, quasinormal form.
@article{MAIS_2013_20_3_a1,
     author = {I. S. Kashchenko},
     title = {Spatial {Properties} of {High-Mode} {Bifurcations} of a {Distributed} {Logistic} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {29--42},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a1/}
}
TY  - JOUR
AU  - I. S. Kashchenko
TI  - Spatial Properties of High-Mode Bifurcations of a Distributed Logistic Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 29
EP  - 42
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a1/
LA  - ru
ID  - MAIS_2013_20_3_a1
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%T Spatial Properties of High-Mode Bifurcations of a Distributed Logistic Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 29-42
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a1/
%G ru
%F MAIS_2013_20_3_a1
I. S. Kashchenko. Spatial Properties of High-Mode Bifurcations of a Distributed Logistic Equation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 29-42. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a1/

[1] S. A. Kaschenko, “Bifurkacionnye osobennosti v odnoi modeli dinamiki populaci, opisyvaemoi parabolicheskim uravneniem s maloi diffusiei i otkloneneniem prostranstvennoi peremennoi”, Modelirovanie dinamiki populyacii, Mejvuz. sb. nauchn. tr., Gorkiy, 1989 (in Russian)

[2] D. S. Kashchenko, I. S. Kashchenko, “Dinamika parabolicheskogo uravneniya s maloi diffuziei i otkloneniem prostranstvennoj peremennoj”, Modelirovanie i analiz informacionnyh sistem, 15:2 (2008), 89–93 (in Russian) | MR

[3] D. S. Kashchenko, I. S. Kashchenko, “Dinamika logisticheskogo uravnenija s prostranstvenno-raspredelennym nasyshheniem”, Modelirovanie i analiz informacionnyh sistem, 16:1 (2009), 54–61 (in Russian) | MR

[4] I. S. Kashchenko, “Local dynamics of spatially distributed Hutchinson equation”, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3520–3524 | DOI | MR | Zbl

[5] S. Leven, L. Segel, “Pattern generation in space and aspect”, SIAM Review, 27 (1985), 45–67 | DOI | MR

[6] V. A. Vasil'ev, Ju. M. Romanovskij, V. G. Jahno, Avtovolnovye processy, Nauka, M., 1987 (in Russian)

[7] Ju. M. Svirezhev, Nelinejnye volny, dissipativnye struktury i katastrofy v jekologii, Nauka, M., 1987 (in Russian) | MR | Zbl

[8] A. D. Brjuno, Lokal'nyj metod nelinejnogo analiza differencial'nyh uravnenij, Nauka, M., 1979 (in Russian) | MR

[9] V. I. Arnold, Ordinary Differential Equations, The MIT Press, 1978 | MR | MR

[10] P. Hartman, Ordinary Differential Equations, 2nd ed., Society for Industrial Applied Math., 2002 | MR | MR

[11] J. E. Marsden, M. McCracken, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer-Verlag, 1976 | DOI | MR | MR | Zbl

[12] S. A. Kashhenko, “O kvazinormal'nyh formah dlja parabolicheskih uravnenij s maloj diffuziej”, DAN SSSR, 299:5 (1988), 1049–1053 (in Russian)

[13] S. A. Kashhenko, “Prostranstvennye osobennosti vysokomodovyh bifurkacij dvuhkomponentnyh sistem s maloj diffuziej”, Differencial'nye uravnenija, 25:2 (1989), 262–270 (in Russian) | MR

[14] S. A. Kaschenko, “Normalization in the systems with small diffusion”, International Journal of Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[15] T. S. Ahromeeva, S. P. Kurdjumov, G. G. Malineckij, A. A. Samarskij, Nestacionarnye struktury i diffuzionnyj haos, Nauka, M., 1992 (in Russian) | MR | Zbl

[16] S. A. Kashhenko, Issledovanie ustojchivosti reshenij linejnyh parabolicheskih uravnenij s blizkimi k postojannym kojefficientami i maloj diffuziej, Tr. seminara im. I. G. Petrovskogo, 15, 1991 (in Russian)

[17] A. Stokes, “On the approximation of nonlinear oscillation”, Trudy 5-j mezhdunarodnoj konferencii po nelinejnym kolebanijam (Kiev, 1970), v. 2, 480–491 | Zbl