Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_3_a0, author = {P. N. Nesterov}, title = {Parametric {Resonance} in a {Time-Dependent} {Harmonic} {Oscillator}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {5--28}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/} }
P. N. Nesterov. Parametric Resonance in a Time-Dependent Harmonic Oscillator. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 5-28. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/
[1] V. Sh. Burd, V. A. Karakulin, “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients”, Math. Notes, 64:5 (1998), 571–578 | DOI | DOI | MR | Zbl
[2] N. N. Bogoliubov, Yu. A. Mitropolskiy, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961 | MR
[3] Sagdeev R. Z., Usikov D. A., Zaslavsky G. M., Nonlinear Physics: From Pendulum to Turbulence and Chaos, Harwood Academic Publishers, New York, 1988 | MR
[4] Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955 | MR | Zbl
[5] P. N. Nesterov, “Construction of the asymptotics of the solutions of the one-dimensional Schrödinger equation with rapidly oscillating potential”, Math. Notes, 80:2 (2006), 233–243 | DOI | DOI | MR | Zbl
[6] P. N. Nesterov, “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing doefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl
[7] A. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, 1986 | MR | MR | Zbl
[8] V. A. Yakubovich, V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, v. 1, Keter Publishing House, Jerusalem, 1975 | MR | MR
[9] V. Burd, Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications, Lecture Notes in Pure and Applied Mathematics, 255, Chapman Hall/CRC, Boca Raton, 2007 | DOI | MR | Zbl
[10] V. Burd, P. Nesterov, “Parametric resonance in adiabatic oscillators”, Results Math., 58:1–2 (2010), 1–15 | DOI | MR | Zbl
[11] S. A. Denisov, A. Kiselev, “Spectral properties of Schrödinger operators with decaying potentials”, Proceedings of Symposia in Pure Mathematics, 76, Amer. Math. Soc., Providence, RI, 2007, 565–589 | DOI | MR | Zbl
[12] M. S. P. Eastham, The asymptotic solution of linear differential systems, London Math. Soc. Monographs, Clarendon Press, Oxford, 1989 | MR | Zbl
[13] W. A. Jr. Harris, D. A. Lutz, “On the asymptotic integration of linear differential systems”, J. Math. Anal. Appl., 48:1 (1974), 1–16 | DOI | MR | Zbl
[14] W. A. Jr. Harris, D. A. Lutz, “A Unified Theory of Asymptotic Integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586 | DOI | MR | Zbl
[15] N. Levinson, “The asymptotic nature of the solutions of linear systems of differential equations”, Duke Math. J., 15 (1948), 111–126 | DOI | MR | Zbl
[16] M. Lukic, “Schrödinger operators with slowly decaying Wigner–von Neumann type potentials”, J. Spectr. Theory, 3:2 (2013), 147–169 | DOI | MR | Zbl
[17] S. Naboko, S. Simonov, “Zeroes of the spectral density of the periodic Schrödinger operator with Wigner–von Neumann potential”, Math. Proc. Cambridge Philos. Soc., 153:1 (2012), 33–58 | DOI | MR | Zbl
[18] P. Nesterov, “On eigenvalues of the one-dimensional Dirac operator with oscillatory decreasing potential”, Math. Phys. Anal. Geom., 15:3 (2012), 257–298 | DOI | MR | Zbl
[19] K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, S. G. Adams, “Five parametric resonances in a microelectromechanical system”, Nature, 396 (1998), 149–152 | DOI
[20] C. I. Um, K. H. Yeon, T. F. George, “The quantum damped harmonic oscillator”, Phys. Rep., 362:2–3 (2002), 63–192 | MR | Zbl
[21] A. Wintner, “The adiabatic linear oscillator”, Amer. J. Math., 68 (1946), 385–397 | DOI | MR | Zbl
[22] A. Wintner, “Asymptotic integration of the adiabatic oscillator”, Amer. J. Math., 69 (1946), 251–272 | DOI | MR