Parametric Resonance in a Time-Dependent Harmonic Oscillator
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 5-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the phenomenon of appearance of new resonances in a time-dependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schrödinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson's fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator) in which the parametric resonances, mentioned in the paper, may occur.
Keywords: harmonic oscillator, time-dependent frequency, resonance, method of averaging, asymptotics.
@article{MAIS_2013_20_3_a0,
     author = {P. N. Nesterov},
     title = {Parametric {Resonance} in a {Time-Dependent} {Harmonic} {Oscillator}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--28},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/}
}
TY  - JOUR
AU  - P. N. Nesterov
TI  - Parametric Resonance in a Time-Dependent Harmonic Oscillator
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 5
EP  - 28
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/
LA  - ru
ID  - MAIS_2013_20_3_a0
ER  - 
%0 Journal Article
%A P. N. Nesterov
%T Parametric Resonance in a Time-Dependent Harmonic Oscillator
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 5-28
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/
%G ru
%F MAIS_2013_20_3_a0
P. N. Nesterov. Parametric Resonance in a Time-Dependent Harmonic Oscillator. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 3, pp. 5-28. http://geodesic.mathdoc.fr/item/MAIS_2013_20_3_a0/

[1] V. Sh. Burd, V. A. Karakulin, “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients”, Math. Notes, 64:5 (1998), 571–578 | DOI | DOI | MR | Zbl

[2] N. N. Bogoliubov, Yu. A. Mitropolskiy, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961 | MR

[3] Sagdeev R. Z., Usikov D. A., Zaslavsky G. M., Nonlinear Physics: From Pendulum to Turbulence and Chaos, Harwood Academic Publishers, New York, 1988 | MR

[4] Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955 | MR | Zbl

[5] P. N. Nesterov, “Construction of the asymptotics of the solutions of the one-dimensional Schrödinger equation with rapidly oscillating potential”, Math. Notes, 80:2 (2006), 233–243 | DOI | DOI | MR | Zbl

[6] P. N. Nesterov, “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing doefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl

[7] A. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, 1986 | MR | MR | Zbl

[8] V. A. Yakubovich, V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, v. 1, Keter Publishing House, Jerusalem, 1975 | MR | MR

[9] V. Burd, Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications, Lecture Notes in Pure and Applied Mathematics, 255, Chapman Hall/CRC, Boca Raton, 2007 | DOI | MR | Zbl

[10] V. Burd, P. Nesterov, “Parametric resonance in adiabatic oscillators”, Results Math., 58:1–2 (2010), 1–15 | DOI | MR | Zbl

[11] S. A. Denisov, A. Kiselev, “Spectral properties of Schrödinger operators with decaying potentials”, Proceedings of Symposia in Pure Mathematics, 76, Amer. Math. Soc., Providence, RI, 2007, 565–589 | DOI | MR | Zbl

[12] M. S. P. Eastham, The asymptotic solution of linear differential systems, London Math. Soc. Monographs, Clarendon Press, Oxford, 1989 | MR | Zbl

[13] W. A. Jr. Harris, D. A. Lutz, “On the asymptotic integration of linear differential systems”, J. Math. Anal. Appl., 48:1 (1974), 1–16 | DOI | MR | Zbl

[14] W. A. Jr. Harris, D. A. Lutz, “A Unified Theory of Asymptotic Integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586 | DOI | MR | Zbl

[15] N. Levinson, “The asymptotic nature of the solutions of linear systems of differential equations”, Duke Math. J., 15 (1948), 111–126 | DOI | MR | Zbl

[16] M. Lukic, “Schrödinger operators with slowly decaying Wigner–von Neumann type potentials”, J. Spectr. Theory, 3:2 (2013), 147–169 | DOI | MR | Zbl

[17] S. Naboko, S. Simonov, “Zeroes of the spectral density of the periodic Schrödinger operator with Wigner–von Neumann potential”, Math. Proc. Cambridge Philos. Soc., 153:1 (2012), 33–58 | DOI | MR | Zbl

[18] P. Nesterov, “On eigenvalues of the one-dimensional Dirac operator with oscillatory decreasing potential”, Math. Phys. Anal. Geom., 15:3 (2012), 257–298 | DOI | MR | Zbl

[19] K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, S. G. Adams, “Five parametric resonances in a microelectromechanical system”, Nature, 396 (1998), 149–152 | DOI

[20] C. I. Um, K. H. Yeon, T. F. George, “The quantum damped harmonic oscillator”, Phys. Rep., 362:2–3 (2002), 63–192 | MR | Zbl

[21] A. Wintner, “The adiabatic linear oscillator”, Amer. J. Math., 68 (1946), 385–397 | DOI | MR | Zbl

[22] A. Wintner, “Asymptotic integration of the adiabatic oscillator”, Amer. J. Math., 69 (1946), 251–272 | DOI | MR