Mots-clés : asynchronous transition system
@article{MAIS_2013_20_2_a6,
author = {A. A. Husainov and E. S. Bushmeleva and T. A. Trishina},
title = {Homology {Groups} of a {Pipeline} {Petri} {Net}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {92--103},
year = {2013},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a6/}
}
TY - JOUR AU - A. A. Husainov AU - E. S. Bushmeleva AU - T. A. Trishina TI - Homology Groups of a Pipeline Petri Net JO - Modelirovanie i analiz informacionnyh sistem PY - 2013 SP - 92 EP - 103 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a6/ LA - ru ID - MAIS_2013_20_2_a6 ER -
A. A. Husainov; E. S. Bushmeleva; T. A. Trishina. Homology Groups of a Pipeline Petri Net. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 92-103. http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a6/
[1] A. A. Husainov, “On the homology of small categories and asynchronous transition systems”, Homology Homotopy Appl., 6:1 (2004), 439–471 http://www.rmi.acnet.ge/hha | MR | Zbl
[2] E. Goubault, The Geometry of Concurrency, Thesis Doct. Phylosophy (Mathematics), Ecole Normale Supérieure, 1995
[3] P. Gaucher, “About the globular homology of higher dimensional automata”, Topol. Geom. Differ., 43:2 (2002), 107–156 | MR | Zbl
[4] E. Goubault, E. Haucourt, S. Krishnan, “Covering space theory for directed topology”, Theory Appl. Categ., 22:9 (2009), 252–268 | MR | Zbl
[5] A. A. Husainov, “The Homology of Partial Monoid Actions and Petri Nets”, Appl. Categor. Struct., 2012 | DOI
[6] A. A. Husainov, E. S. Bushmeleva, “Gomologii asinhronnyh sistem”, Aktualnye problemy matematiki, fiziki, informatiki v vuze i shkole, Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii (23 marta 2012, Komsomolsk-na-Amure), Izd-vo AmGPGU, Komsomolsk-na-Amure, 2012, 24–31 (in Russian)
[7] G. Winskel, M. Nielsen, “Models for Concurrency”, Handbook of Logic in Computer Science, v. IV, eds. Abramsky, Gabbay, Maibaum, Oxford University Press, 1995, 1–148 | MR
[8] M. Nielsen, G. Winskel, “Petri nets and bisimulation”, Theoretical Computer Science, 153:1–2 (1996), 211–244 | DOI | MR | Zbl
[9] A. A. Khusainov, “Homology groups of semicubical sets”, Sib. Math. J., 49:1 (2008), 593–604 | DOI | MR | Zbl