Construction of a Model for the Cross-Domain Opinion Word Extraction
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a new approach for domain-specific opinion word extraction in the Russian language. We propose a set of statistical features and an algorithm combination that can extract opinion words in a particular domain. The extraction model was trained in the movie domain and then applied to four other domains. The quality of the obtained sentiment lexicons was evaluated intrinsically on the base of an expert markup and remained on the high level during the model transfer to various domains. Finally, our method is adapted to the movie domain in English and it demonstrated good results.
Keywords: sentiment analysis, opinion words
Mots-clés : domain adaptation.
@article{MAIS_2013_20_2_a4,
     author = {N. V. Loukachevitch and I. I. Chetviorkin},
     title = {Construction of a {Model} for the {Cross-Domain} {Opinion} {Word} {Extraction}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {70--79},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a4/}
}
TY  - JOUR
AU  - N. V. Loukachevitch
AU  - I. I. Chetviorkin
TI  - Construction of a Model for the Cross-Domain Opinion Word Extraction
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 70
EP  - 79
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a4/
LA  - ru
ID  - MAIS_2013_20_2_a4
ER  - 
%0 Journal Article
%A N. V. Loukachevitch
%A I. I. Chetviorkin
%T Construction of a Model for the Cross-Domain Opinion Word Extraction
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 70-79
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a4/
%G ru
%F MAIS_2013_20_2_a4
N. V. Loukachevitch; I. I. Chetviorkin. Construction of a Model for the Cross-Domain Opinion Word Extraction. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 70-79. http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a4/

[1] K. Ahmad, L. Gillam, L. Tostevin, “University of Surrey participation in Trec8: Weirdness indexing for logical document extrapolation and retrieval (wilder)”, The Eighth Text REtrieval Conference TREC-8 (1999)

[2] A. Aue, M. Gamon, “Customizing sentiment classifiers to new domains: A case study”, Proceedings of recent advances in natural language processing (RANLP) (2005)

[3] J. Blitzer, M. Dredze, F. Pereira, “Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification”, Annual Meeting-Association For Computational Linguistics, 45 (2007), 440–447

[4] J. P. Callan, W. B. Croft, S. M. Harding, “The INQUERY retrieval system”, Proceedings of the third international conference on database and expert systems applications (1992)

[5] Y. Choi, C. Cardie, “Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification”, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, v. 2, 2009, 590–598

[6] X. Ding, B. Liu, P. S. Yu, “A holistic lexicon-based approach to opinion mining”, Proceedings of the international conference on Web search and web data mining (2008), 231–240

[7] A. Esuli, F. Sebastiani, “Determining the semantic orientation of terms through gloss classification”, Proceedings of the 14th ACM international conference on Information and knowledge management (2005), 617–624

[8] M. Hu, B. Liu, “Mining and summarizing customer reviews”, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (2004), 168–177

[9] V. Jijkoun, M. de Rijke, W. Weerkamp, “Generating focused topic-specific sentiment lexicons”, Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (2010), 585–594

[10] H. Kanayama, T. Nasukawa, “Fully automatic lexicon expansion for domain-oriented sentiment analysis”, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (2006), 355–363

[11] Y. Lu, M. Castellanos, U. Dayal, C. X. Zhai, “Automatic construction of a context-aware sentiment lexicon: an optimization approach”, Proceedings of the 20th international conference on World wide web (2011), 347–356

[12] A. Neviarouskaya, H. Prendinger, M. Ishizuka, “Sentiful: Generating a reliable lexicon for sentiment analysis”, Affective Computing and Intelligent Interaction and Workshops, 2009, 1–6

[13] S. J. Pan, X. Ni, J. T. Sun, Q. Yang, Z. Chen, “Cross-domain sentiment classification via spectral feature alignment”, Proceedings of the 19th international conference on World wide web (2010), 751–760 | Zbl

[14] B. Pang, L. Lee, Opinion mining and sentiment analysis, Foundations and Trends in Information Retrieval, Now Publishers, Hanover, Massachusetts, 2008

[15] N. Ponomareva, M. Thelwall, Biographies or blenders: which resource is best for cross-domain sentiment analysis?, Computational Linguistics and Intelligent Text Processing, 2012, 488–499 | DOI

[16] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. Stede, “Lexicon-based methods for sentiment analysis”, Computational Linguistics, 37:2 (2011), 267–307 | DOI

[17] L. Velikovich, S. Blair-Goldensohn, K. Hannan, R. McDonald, “The viability of web-derived polarity lexicons”, Human Language Technologies, The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010, 777–785

[18] Q. Wu, S. Tan, X. Cheng, “Graph ranking for sentiment transfer”, Proceedings of the ACL-IJCNLP (2009), 317–320