A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 148-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper contains a sketch of the proof of an upper bound for the variance of the number of hyperfaces of a random polytope when the mother body is a simple polytope. Thus we verify a weaker version of the result in [1] stated without a proof. The article is published in the author's wording.
Keywords: Random polytope, $f$-vector, variance.
@article{MAIS_2012_19_6_a13,
     author = {A. Magazinov},
     title = {A {Uniform} {Asymptotical} {Upper} {Bound} for the {Variance} of a {Random} {Polytope} in a {Simple} {Polytope}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {148--151},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/}
}
TY  - JOUR
AU  - A. Magazinov
TI  - A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 148
EP  - 151
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/
LA  - en
ID  - MAIS_2012_19_6_a13
ER  - 
%0 Journal Article
%A A. Magazinov
%T A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 148-151
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/
%G en
%F MAIS_2012_19_6_a13
A. Magazinov. A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 148-151. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/

[1] I. Bárány, M. Reitzner, Central limit theorems for random polytopes in convex polytopes, Manuscript, 2007

[2] W. Weil, J. A. Wieacker, “Stochastic Geometry”, Handbook of Convex Geometry, v. B, North-Holland, Amsterdam, 1993, 1391–1498 | MR

[3] A. Rényi, R. Sulanke, “Über die konvexe Hülle von $n$ zufällig gewählten Punkten”, Z. Wahrsch. Verw. Geb., 2 (1963), 75–84 | MR | Zbl

[4] I. Bárány, “Random polytopes, convex bodies and approximation”, Stochastic Geometry, Springer-Verlag, Berlin, 2007, 77–118 | MR | Zbl

[5] J. Pardon, “Central limit theorems for uniform model random polygons”, J. Theoret. Probab., 25:3 (2012), 823–833 | MR | Zbl

[6] T. Dam, J. B. Sørensen, M. H. Thomsen, “Spatial Point Processes”, Models, Simulation and Statistical Inference, Aalborg univ., 1999