@article{MAIS_2012_19_6_a13,
author = {A. Magazinov},
title = {A {Uniform} {Asymptotical} {Upper} {Bound} for the {Variance} of a {Random} {Polytope} in a {Simple} {Polytope}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {148--151},
year = {2012},
volume = {19},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/}
}
TY - JOUR AU - A. Magazinov TI - A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 148 EP - 151 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/ LA - en ID - MAIS_2012_19_6_a13 ER -
A. Magazinov. A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 148-151. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a13/
[1] I. Bárány, M. Reitzner, Central limit theorems for random polytopes in convex polytopes, Manuscript, 2007
[2] W. Weil, J. A. Wieacker, “Stochastic Geometry”, Handbook of Convex Geometry, v. B, North-Holland, Amsterdam, 1993, 1391–1498 | MR
[3] A. Rényi, R. Sulanke, “Über die konvexe Hülle von $n$ zufällig gewählten Punkten”, Z. Wahrsch. Verw. Geb., 2 (1963), 75–84 | MR | Zbl
[4] I. Bárány, “Random polytopes, convex bodies and approximation”, Stochastic Geometry, Springer-Verlag, Berlin, 2007, 77–118 | MR | Zbl
[5] J. Pardon, “Central limit theorems for uniform model random polygons”, J. Theoret. Probab., 25:3 (2012), 823–833 | MR | Zbl
[6] T. Dam, J. B. Sørensen, M. H. Thomsen, “Spatial Point Processes”, Models, Simulation and Statistical Inference, Aalborg univ., 1999