Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 127-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved in [10] that each Platonic polyhedron $P$ can be folded into a flat multilayered face of $P$ by a continuous folding process of polyhedra. In this paper, we give explicit formulas of continuous functions for such a continuous flattening process in $\mathbb{R}^3$ for a regular tetrahedron. The article is published in the author's wording.
Keywords: Continuous Flattening, Regular Tetrahedra, Polyhedra, Paper Folding.
@article{MAIS_2012_19_6_a11,
     author = {Jin-ichi Itoh and Chie Nara},
     title = {Continuous {Flattening} of a {Regular} {Tetrahedron} with {Explicit} {Mappings}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a11/}
}
TY  - JOUR
AU  - Jin-ichi Itoh
AU  - Chie Nara
TI  - Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 127
EP  - 136
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a11/
LA  - en
ID  - MAIS_2012_19_6_a11
ER  - 
%0 Journal Article
%A Jin-ichi Itoh
%A Chie Nara
%T Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 127-136
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a11/
%G en
%F MAIS_2012_19_6_a11
Jin-ichi Itoh; Chie Nara. Continuous Flattening of a Regular Tetrahedron with Explicit Mappings. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 127-136. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a11/

[1] A. D. Alexandrov, Convex Polyhedra, Monographs in Mathematics, Springer-Verlag, Berlin, 2005 (Translation of the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, A. B. Sossinsky) | MR

[2] T. Banchoff, “Nonrigidity theorem for tight polyhedra”, Arch. Math., 21 (1970), 416–423 | MR | Zbl

[3] D. Bleecker, “Volume increasing isometric deformations of convex polyhedra”, J. Differential Geom., 43 (1996), 505–526 | MR | Zbl

[4] A. Cauchy, “Sur les polygons et les polyedres”, J. Ecole Polytech., 9 (1813), 87

[5] R. Connelly, “A counterexample to the rigidity conjecture for polyhedra”, Inst. Hautes Etudes Sci. Publ. Math., 47, 1978, 333–338 | MR

[6] R. Connelly, “The rigidity of polyhedral surface”, Math. Mag., 52 (1979), 275–283 | MR | Zbl

[7] E. D. Demaine, M. D. Demaine, A. Lubiw, Flattening polyhedra, Unpublished manuscript, 2001

[8] E. D. Demaine, J. O'Rourke, Geometric folding algorithms, Lincages, Origami, Polyhedra, Cambridge University Press, 2007 | MR | Zbl

[9] K. Hirata, Private communication, 2011

[10] J. Itoh, C. Nara, “Continuous flattening of Platonic polyhedra”, Computational geometry, graphs and applications, Proceedings of the international conference, LNCS, 7033, Springer, 2011, 108–121 | MR | Zbl

[11] J. Itoh, C. Nara, C. Vîlcu, “Continuous flattening of convex polyhedra”, EGC 2011 “Computational Geometry”, XIV Spanish meeting on computational geometry, LNCS, 7579, Springer, 2012, 85–97 | Zbl

[12] A. Milka, “Linear bendings of regular convex polyhedra”, Matematicheskaya Fizika, Analiz, Geometriya, 1 (1994), 116–130 | MR | Zbl

[13] I. Pak, “Inflating the cube without stretching”, Amer. Math. Monthly, 115 (2008), 443–445 | MR | Zbl

[14] I. Sabitov, “The volume of polyhedron as a function of its metric”, Fundam. Prikl. Mat., 2:4 (1996), 1235–1246 | MR | Zbl

[15] I. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20 (1998), 405–425 | MR | Zbl

[16] I. Sabitov, “On some recent results in the metric theory of polyhedra”, Rend. Circ. Mat. Palermo, 2, Suppl. 65, part II (2000), 167–177 | MR