Formation of a Warped Nanomodular Surface Under Ion Bombardment. A~Nanoscale Model of Surface Erosion
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 40-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nanoscale model of surface erosion, simulating the process of surface shaping under ion bombardment is considered. The possibility of a ripple topography is demonstrated by means of bifurcations theory methods for dynamical systems with an infinite dimensional space of initial data. In particular, we use the normal form of Poincare–Dulak.
Mots-clés : bifurcation
Keywords: stability, ripple structures, space-nonhomogeneous solutions.
@article{MAIS_2012_19_5_a3,
     author = {D. A. Kulikov and A. S. Rudy},
     title = {Formation of a {Warped} {Nanomodular} {Surface} {Under} {Ion} {Bombardment.} {A~Nanoscale} {Model} of {Surface} {Erosion}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {40--49},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a3/}
}
TY  - JOUR
AU  - D. A. Kulikov
AU  - A. S. Rudy
TI  - Formation of a Warped Nanomodular Surface Under Ion Bombardment. A~Nanoscale Model of Surface Erosion
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 40
EP  - 49
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a3/
LA  - ru
ID  - MAIS_2012_19_5_a3
ER  - 
%0 Journal Article
%A D. A. Kulikov
%A A. S. Rudy
%T Formation of a Warped Nanomodular Surface Under Ion Bombardment. A~Nanoscale Model of Surface Erosion
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 40-49
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a3/
%G ru
%F MAIS_2012_19_5_a3
D. A. Kulikov; A. S. Rudy. Formation of a Warped Nanomodular Surface Under Ion Bombardment. A~Nanoscale Model of Surface Erosion. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 40-49. http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a3/

[1] A. S. Rudyi, V. I. Bachurin, “Prostranstvenno nelokalnaya model erozii poverkhnosti ionnoi bombardirovkoi”, Izv. RAN. Seriya fizicheskaya, 72:5 (2008), 624–629

[2] S. E. Birkgan, V. I. Bachurin, A. S. Rudy, V. K. Smirnov, “Nanoscale model of surface erosion by ion bombardment”, Eff. Def. in Sol., 159:6 (2004), 319–329

[3] A. S. Rudyi, A. N. Kulikov, A. V. Metlitskaya, “Modelirovanie protsessov formirovaniya nanostruktur pri raspylenii poverkhnosti ionnoi bombardirovkoi”, Mikroelektronika, 40:2 (2011), 109–118 | MR

[4] P. Sigmund, “A mechanism of surface micro-roughening by ion bombardment”, J. Mater. Sci., 8 (1973), 1545–1553 | DOI

[5] R. M. Bradley, J. M. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI

[6] N. A. Kudryashov, P. N. Ryabov, M. N. Strikhanov, “Chislennoe modelirovanie formirovaniya nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Yadernaya fizika i inzhiniring, 1:2 (2010), 151–158 | MR

[7] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, L., 1950, 256 pp.

[8] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[9] S. Ya. Yakubov, “Razreshimost zadachi abstraktnykh kvazilineinykh uravnenii vtorogo poryadka i ikh prilozhenii”, Trudy Moskovskogo matematicheskogo obschestva, 23, 1970, 37–60 | Zbl

[10] J. Segal, “Nonlinear Semigroups”, Ann of Math., 78 (1963), 339–364 | DOI | MR | Zbl

[11] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Trudy Moskovskogo matematicheskogo obschestva, 10, 1961, 297–350 | MR

[12] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1976, 114–129 | MR

[13] Dzh. Marsden, M. Mak-Kraken, Bifurkatsii rozhdeniya tsikla i ee prilozheniya, Nauka, M., 1980, 368 pp. | MR

[14] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 430 pp.

[15] A. Yu. Kolesov, A. N. Kulikov, Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Izd-vo Yaroslavskogo gos. un-ta, Yaroslavl, 2003, 107 pp.

[16] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. uravneniya, 40:9 (2010), 1290–1299 | MR

[17] A. N. Kulikov, D. A. Kulikov, A. S. Rudyi, “Bifurkatsii nanostruktur pod vozdeistviem ionnoi bombardirovki”, Vestnik Udmurtskogo un-ta, 2011, no. 4, 86–99