Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_5_a0, author = {H. Edelsbrunner and A. Ivanov and R. Karasev}, title = {Current {Open} {Problems} in {Discrete} and {Computational} {Geometry}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {5--17}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a0/} }
TY - JOUR AU - H. Edelsbrunner AU - A. Ivanov AU - R. Karasev TI - Current Open Problems in Discrete and Computational Geometry JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 5 EP - 17 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a0/ LA - en ID - MAIS_2012_19_5_a0 ER -
H. Edelsbrunner; A. Ivanov; R. Karasev. Current Open Problems in Discrete and Computational Geometry. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 5-17. http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a0/
[1] R. L. Adler, The Geometry of Random Fields, John Wiley Sons, Chichester, England, 1981 | MR | Zbl
[2] H. Edelsbrunner, J. L. Harer, Computational Topology. An Introduction, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl
[3] A. J. S. Hamilton, J. R. Gott III, D. Weinberg, “The topology of the large-scale structure of the Universe”, The Astrophys. J., 309 (1986), 1–12 | DOI | MR
[4] A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality”, Angew. Chem., 31 (1992), 989–1007 | DOI
[5] A. B. Buda, K. Mislow, “On a measure of axiality for triangular domains”, Elem. Math., 46 (1999), 65–73 | MR
[6] B. Grünbaum, “Measures of symmetry for convex sets”, Proc. Sympos. Pure Math., 7, Amer. Math. Soc., 1963 | MR
[7] M. K. Hu, “Visual pattern recognition by moment invariants”, IEEE Trans. Inform. Theory, 8 (1962)
[8] B. Aronov, A. Hubard, Convex equipartitions of volume and surface area, 2010, arXiv: 1010.4611
[9] I. Bárány, “A generalization of Carathéodory's theorem”, Discrete Math., 40:2–3 (1982), 141–152 | DOI | MR
[10] I. Bárány, P. Blagojević, A. Szűcs, “Equipartitioning by a convex $3$-fan”, Adv. Math., 223:2 (2010), 579–593 | DOI | MR | Zbl
[11] M. Bern, D. Eppstein, “Worst-case bounds for subadditive geometric graphs”, Proc. 9th Ann. Sympos. Comput. Geom., 1993, 183–188
[12] E. Boros, Z. Füredi, “The number of triangles covering the center of an $n$-set”, Geom. Dedicata, 17:1 (1984), 69–77 | DOI | MR | Zbl
[13] J. Pach, “A Tverberg-type result on multicolored simplices”, Comput. Geom., 10:2 (1998), 71–76 | DOI | MR | Zbl
[14] C. G. A. Harnack, “Über Vieltheiligkeit der ebenen algebraischen Curven”, Math. Ann., 10 (1876), 189–199 | DOI | MR
[15] M. Gromov, “Singularities, expanders, and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry”, Geometric and Functional Analysis, 20:2 (2010), 416–526 | DOI | MR | Zbl
[16] R. N. Karasev, Equipartition of several measures, 2010, arXiv: 1011.4762 | MR
[17] R. N. Karasev, “A simpler proof of the Boros–Füredi–Bárány–Pach–Gromov theorem”, Discrete Comput. Geom., 47:3 (2012), 492–495 | DOI | MR | Zbl
[18] H. Kaplan, J. Matoušek, M. Sharir, “Simple proofs of classical theorems in discrete geometry via the Guth–Katz polynomial partitioning technique”, Discrete Comput. Geom., 48:3 (2012), 499–517 | DOI | MR
[19] R. Nandakumar, N. Ramana Rao, Fair' partitions of polygons — an introduction, 2008, arXiv: 0812.2241
[20] J. Matoušek, U. Wagner, On Gromov's method of selecting heavily covered points, 2011, arXiv: 1102.3515
[21] P. Soberón, Balanced convex partitions of measures in $\mathbb{R}^d$, 2010, arXiv: 1010.6191 | MR
[22] H. Steinhaus, “Sur la division des ensembles de l'espaces par les plans et des ensembles plans par les cercles”, Fund. Math., 33 (1945), 245–263 | MR | Zbl
[23] A. H. Stone, J. W. Tukey, “Generalized 'sandwich' theorems”, Duke Math. J., 9 (1942), 356–359 | DOI | MR | Zbl
[24] Funct. Anal. Appl., 22:3 (1988), 182–190 | DOI | MR
[25] Russian Math. Surveys, 47:2 (1992), 59–131 | DOI | MR | Zbl
[26] N. Innami, S. Naya, “A comparison theorems for Steiner minimum trees in surfaces with curvature bounded below”, Tohoku Math. Journal, 2012 (to appear)
[27] A. O. Ivanov, A. A. Tuzhilin, Extreme Networks Theory, Inst. of Komp. Issl., Moscow–Izhevsk, 2003 (in Russian)
[28] L. Vesely, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Mathematicae, 8:2–3 (1993), 125–131 | MR | Zbl
[29] Math. Notes, 87:4 (2010), 485–488 | DOI | DOI | MR | Zbl
[30] B. B. Bednov, N. P. Strelkova, “On the existence problem for shortest networks in Banach spaces”, Mat. zametki, 2013 (to appear)
[31] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Matematychni Studii, 36:2 (2011), 197–200 | MR
[32] A. O. Ivanov and A. A. Tuzhilin, Branching Solutions to One-Dimensional Variational Problems, World Scientific, Singapore–New Jersey–London–Hong Kong, 2000 | MR
[33] A. O. Ivanov, A. A. Tuzhilin, “Branching geodesics in normed spaces”, Izv. RAN Ser. Matem., 66:5 (2002), 33–82 | MR | Zbl
[34] D. P. Il'utko, “Branching extremals of the length functional in a $\lambda$-normed space”, Matem. sbornik, 197:5 (2006), 75–98 | DOI | MR
[35] K. J. Swanepoel, “The local Steiner problem in normed planes”, Networks, 36:2 (2000), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[36] Sb. Math., 197:9 (2006), 1309–1340 | DOI | DOI | MR | Zbl
[37] Moscow University Math. Bull., 64:2 (2009), 62–66 | DOI | MR
[38] A. O. Ivanov, A. A. Tuzhilin, One-dimensional Gromov minimal filling, 2011, arXiv: 1101.0106v2[math.MG]
[39] Sbornik: Mathematics, 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl