Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_4_a7, author = {E. S. Kudryashova and A. A. Khusainov}, title = {Generalized {Asynchronous} {Systems}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {78--86}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/} }
E. S. Kudryashova; A. A. Khusainov. Generalized Asynchronous Systems. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 78-86. http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/
[1] E. A. Pokozii, Metod verifikatsii svoistv parallelizma vremennykh setei Petri, Preprint No 61 Institut Sistem Informatiki SO RAN, Novosibirsk, 1999, 28 pp.
[2] I. B. Virbitskaite, E. A. Pokozii, “Ispolzovanie tekhniki chastichnykh poryadkov dlya verifikatsii vremennykh setei Petri”, Programmirovanie, 1999, no. 1, 28–41 | MR
[3] I. B. Virbitskaite, E. A. Pokozii, “Metod parametricheskoi verifikatsii povedeniya vremennykh setei Petri”, Programmirovanie, 1999, no. 4, 16–29 | MR | Zbl
[4] Penczek W., Potrola A., Advances in Verification of Time Petri Nets and Timed Automata, Springer, Poland, 2006 | Zbl
[5] I. B. Virbitskaite, R. S. Dubtsov, “Semanticheskie oblasti vremennykh struktur sobytii”, Programmirovanie, 2008, no. 3, 3–20 | MR | Zbl
[6] T. A. Henzinger, Z. Manna, A. Pnueli, “Timed transition systems”, Real-Time: Theory in Practice, Lecture Notes in Computer Science, 600, eds. G. Goos, J. Hartmanis, Springer-Verlag, 1991, 226–251 | DOI | MR
[7] R. S. Dubtsov, “Teoretiko-kategornye issledovaniya vremennykh sistem perekhodov s nezavisimostyu”, IX Vserossiiskaya konferentsiya molodykh uchenykh po matematicheskomu modelirovaniyu i informatsionnym tekhnologiyam (g. Kemerovo, 28-30 oktyabrya 2008 goda) http://www.ict.nsc.ru/ws/YM2008/14295/dubtsov.pdf
[8] E. S. Kudryashova, “Vremennye seti Petri dlya monitoringa gruppy virtualnykh mashin”, Sovremennoe sostoyanie estestvennykh i tekhnicheskikh nauk, Materialy IV Mezhdunarodnoi nauch.-prakt. konf. (Moskva, 10 oktyabrya 2011 g.), Nauchnyi zhurnal “Estestvennye i tekhnicheskie nauki” i izd-vo “Sputnik+”, M., 2011, 80–86
[9] L. Popova-Zeugmann, “Quantitative evaluation of time-dependent Petri nets and applications to biochemical networks”, Natural Computing, 10:3 (2011), 1017–1043 | DOI | MR | Zbl
[10] A. A. Khusainov, “Matematicheskaya model zadachi o chitatelyakh i pisatelyakh”, Informatsionnye tekhnologii i vysokoproizvoditelnye vychisleniya, Materialy Mezhdunarodnoi nauch.-prakt. konf. (Khabarovsk, 4-6 oktyabrya 2011 g.), Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2011, 327–332
[11] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, report 1/88, University of Sussex, 1988 http://www.ipipan.gda.pl/m̃arek
[12] E. Goubault, “Labeled cubical sets and asynchronous transitions systems: an adjunction”, Preliminary Proceedings CMCIM'02, 2002 http://www.lix.polytechnique.fr/\allowbreakg̃oubault/papers/cmcim02.ps.gz
[13] E. Goubault, S. Mimram, Formal Relationships Between Geometrical and Classical Models for Concurrency, Cornell Univ., New York, 2010, 15 pp., arXiv: 1004.2818v1[cs.DC]
[14] J. P. Bachmann, L. Popova-Zeugmann, “Time-independent Liveness in Time Petri Nets”, Fundamenta Informaticae, 102 (2010), 1–17 http://www2.informatik.hu-berlin.de/p̃opova/Bachm-Popova.pdf | MR | Zbl