Generalized Asynchronous Systems
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper consider a mathematical model of a concurrent system, the special case of which is an asynchronous system. Distributed asynchronous automata are introduced here. It is proved that Petri nets and transition systems with independence can be considered as distributed asynchronous automata. Time distributed asynchronous automata are defined in a standard way by correspondence which relates events with time intervals. It is proved that the time distributed asynchronous automata generalize time Petri nets and asynchronous systems.
Mots-clés : asynchronous automata
Keywords: asynchronous systems, transition systems with independence, time Petri nets.
@article{MAIS_2012_19_4_a7,
     author = {E. S. Kudryashova and A. A. Khusainov},
     title = {Generalized {Asynchronous} {Systems}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/}
}
TY  - JOUR
AU  - E. S. Kudryashova
AU  - A. A. Khusainov
TI  - Generalized Asynchronous Systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 78
EP  - 86
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/
LA  - ru
ID  - MAIS_2012_19_4_a7
ER  - 
%0 Journal Article
%A E. S. Kudryashova
%A A. A. Khusainov
%T Generalized Asynchronous Systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 78-86
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/
%G ru
%F MAIS_2012_19_4_a7
E. S. Kudryashova; A. A. Khusainov. Generalized Asynchronous Systems. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 78-86. http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a7/

[1] E. A. Pokozii, Metod verifikatsii svoistv parallelizma vremennykh setei Petri, Preprint No 61 Institut Sistem Informatiki SO RAN, Novosibirsk, 1999, 28 pp.

[2] I. B. Virbitskaite, E. A. Pokozii, “Ispolzovanie tekhniki chastichnykh poryadkov dlya verifikatsii vremennykh setei Petri”, Programmirovanie, 1999, no. 1, 28–41 | MR

[3] I. B. Virbitskaite, E. A. Pokozii, “Metod parametricheskoi verifikatsii povedeniya vremennykh setei Petri”, Programmirovanie, 1999, no. 4, 16–29 | MR | Zbl

[4] Penczek W., Potrola A., Advances in Verification of Time Petri Nets and Timed Automata, Springer, Poland, 2006 | Zbl

[5] I. B. Virbitskaite, R. S. Dubtsov, “Semanticheskie oblasti vremennykh struktur sobytii”, Programmirovanie, 2008, no. 3, 3–20 | MR | Zbl

[6] T. A. Henzinger, Z. Manna, A. Pnueli, “Timed transition systems”, Real-Time: Theory in Practice, Lecture Notes in Computer Science, 600, eds. G. Goos, J. Hartmanis, Springer-Verlag, 1991, 226–251 | DOI | MR

[7] R. S. Dubtsov, “Teoretiko-kategornye issledovaniya vremennykh sistem perekhodov s nezavisimostyu”, IX Vserossiiskaya konferentsiya molodykh uchenykh po matematicheskomu modelirovaniyu i informatsionnym tekhnologiyam (g. Kemerovo, 28-30 oktyabrya 2008 goda) http://www.ict.nsc.ru/ws/YM2008/14295/dubtsov.pdf

[8] E. S. Kudryashova, “Vremennye seti Petri dlya monitoringa gruppy virtualnykh mashin”, Sovremennoe sostoyanie estestvennykh i tekhnicheskikh nauk, Materialy IV Mezhdunarodnoi nauch.-prakt. konf. (Moskva, 10 oktyabrya 2011 g.), Nauchnyi zhurnal “Estestvennye i tekhnicheskie nauki” i izd-vo “Sputnik+”, M., 2011, 80–86

[9] L. Popova-Zeugmann, “Quantitative evaluation of time-dependent Petri nets and applications to biochemical networks”, Natural Computing, 10:3 (2011), 1017–1043 | DOI | MR | Zbl

[10] A. A. Khusainov, “Matematicheskaya model zadachi o chitatelyakh i pisatelyakh”, Informatsionnye tekhnologii i vysokoproizvoditelnye vychisleniya, Materialy Mezhdunarodnoi nauch.-prakt. konf. (Khabarovsk, 4-6 oktyabrya 2011 g.), Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2011, 327–332

[11] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, report 1/88, University of Sussex, 1988 http://www.ipipan.gda.pl/m̃arek

[12] E. Goubault, “Labeled cubical sets and asynchronous transitions systems: an adjunction”, Preliminary Proceedings CMCIM'02, 2002 http://www.lix.polytechnique.fr/\allowbreakg̃oubault/papers/cmcim02.ps.gz

[13] E. Goubault, S. Mimram, Formal Relationships Between Geometrical and Classical Models for Concurrency, Cornell Univ., New York, 2010, 15 pp., arXiv: 1004.2818v1[cs.DC]

[14] J. P. Bachmann, L. Popova-Zeugmann, “Time-independent Liveness in Time Petri Nets”, Fundamenta Informaticae, 102 (2010), 1–17 http://www2.informatik.hu-berlin.de/p̃opova/Bachm-Popova.pdf | MR | Zbl