The First Yaroslavl Summer School on Discrete and Computational Geometry
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 168-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

We summarize the results of the First Yaroslavl Summer School on Discrete and Computational Geometry and asses its future perspectives.
Keywords: Discrete and Computational Geometry, Summer school.
@article{MAIS_2012_19_4_a13,
     author = {N. Dolbilin and H. Edelsbrunner and A. Ivanov and O. Musin},
     title = {The {First} {Yaroslavl} {Summer} {School}  on {Discrete} and {Computational} {Geometry}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {168--173},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/}
}
TY  - JOUR
AU  - N. Dolbilin
AU  - H. Edelsbrunner
AU  - A. Ivanov
AU  - O. Musin
TI  - The First Yaroslavl Summer School  on Discrete and Computational Geometry
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 168
EP  - 173
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/
LA  - ru
ID  - MAIS_2012_19_4_a13
ER  - 
%0 Journal Article
%A N. Dolbilin
%A H. Edelsbrunner
%A A. Ivanov
%A O. Musin
%T The First Yaroslavl Summer School  on Discrete and Computational Geometry
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 168-173
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/
%G ru
%F MAIS_2012_19_4_a13
N. Dolbilin; H. Edelsbrunner; A. Ivanov; O. Musin. The First Yaroslavl Summer School  on Discrete and Computational Geometry. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 168-173. http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/

[1] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge Univ. Press, Cambridge, England, 2001 | MR | Zbl

[2] S. V. Matveev, Lectures on Algebraic Topology, European Math. Soc., Zuerich, Switzerland, 2006 | MR | Zbl

[3] H. Edelsbrunner, J. Harer, Computational Topology: An Introduction, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl

[4] N. P. Dolbilin, “Properties of Faces of Parallelohedra”, Proc. Steklov Inst. Math., 266, 2009, 105–119 | DOI | MR | Zbl

[5] B. N. Delone, “Geometry of positive quadratic forms”, Uspekhi Matem. Nauk, 1937, no. 3, 16–62 (in Russian)

[6] GTTL, Moscow, 1950 | MR

[7] S. V. Matveev, Algorithmic Topology and Classification of 3-manifolds, Springer ACM-monographs, 2003 ; MTsMNO, Moscow, 2007 | MR

[8] Russian Math. Surveys | DOI | Zbl

[9] A. O. Ivanov, A. A. Tuzhilin, Branching Solutions to One-Dimensional Variational Problems, World Scientific, Singapore, 2000 | MR

[10] A. O. Ivanov, A. A. Tuzhilin, Extreme Networks Theory, Inst. Komp. Issl., Moscow–Izhevsk, 2003 (in Russian)

[11] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling”, Matem. Sbornik, 203 (2012), 65–118, arXiv: 1101.0106v2[math.MG] | DOI | MR | Zbl

[12] I. Pak, Lectures on Discrete and Polyhedral Geometry, Manuscript, http://www.math.ucla.edu/\allowbreakp̃ak/book.htm

[13] H. Kaplan, J. Matoušek, M. Sharir, “Simple proofs of classical theorems in discrete geometry via the Guth–Katz polynomial partitioning technique”, Discrete Comput. Geom., 48 (2012), 499–517 | DOI | MR | Zbl

[14] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, C. Yap, “Classroom examples of robustness problems in geometric computations”, Computational Geometry: Theory and Applications, 40 (2008), 61–78 | DOI | MR | Zbl

[15] K. Mehlhorn, C. Yap, Robust Geometric Computation, Manuscript, http://cs.nyu.edu/yap/book/egc/

[16] G. Liotta, F. P. Preparata, R. Tamassia, “Robust proximity queries: An illustration of degree-driven algorithmic design”, SIAM Journal on Computing, 28 (1999), 864–889 | DOI | MR | Zbl

[17] C. Burnikel, S. Funke, M. Seel, “Exact geometric computation using cascading”, International Journal of Computational Geometry and Applications, 11 (2001), 245–266 | DOI | MR | Zbl

[18] S. Funke, C. Klein, K. Mehlhorn, S. Schmitt, “Controlled perturbation for Delaunay triangulations”, Symposium on Discrete Algorithms, 2005, 1047–1056 | MR

[19] D. Halperin, E. Leiserowitz, “Controlled perturbation for arrangements of circles”, Symposium on Computational Geometry, 2003, 264–273 | MR

[20] K. Mehlhorn, R. Osbild, M. Sagraloff, “A general approach to the analysis of controlled perturbation algorithms”, Computational Geometry: Theory and Applications, 44 (2011), 507–528 | DOI | MR | Zbl

[21] H. Brönimann, C. Burnikel, S. Pion, “Interval arithmetic yields efficient dynamic filters for computational geometry”, Discrete Applied Mathematics, 109 (2001), 25–47 | DOI | MR

[22] O. Devillers, S. Pion, “Efficient exact geometric predicates for Delaunay triangulations”, 5th Workshop on Algorithm Engineering and Experiments (ALENEX), 2003

[23] M. Kerber, Geometric Algorithms for Algebraic Curves and Surfaces, PhD Thesis, Saarland University, 2009 http://www.mpi-inf.mpg.de/m̃kerber/kerber_diss.pdf