Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_4_a13, author = {N. Dolbilin and H. Edelsbrunner and A. Ivanov and O. Musin}, title = {The {First} {Yaroslavl} {Summer} {School} on {Discrete} and {Computational} {Geometry}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {168--173}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/} }
TY - JOUR AU - N. Dolbilin AU - H. Edelsbrunner AU - A. Ivanov AU - O. Musin TI - The First Yaroslavl Summer School on Discrete and Computational Geometry JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 168 EP - 173 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/ LA - ru ID - MAIS_2012_19_4_a13 ER -
%0 Journal Article %A N. Dolbilin %A H. Edelsbrunner %A A. Ivanov %A O. Musin %T The First Yaroslavl Summer School on Discrete and Computational Geometry %J Modelirovanie i analiz informacionnyh sistem %D 2012 %P 168-173 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/ %G ru %F MAIS_2012_19_4_a13
N. Dolbilin; H. Edelsbrunner; A. Ivanov; O. Musin. The First Yaroslavl Summer School on Discrete and Computational Geometry. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 168-173. http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a13/
[1] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge Univ. Press, Cambridge, England, 2001 | MR | Zbl
[2] S. V. Matveev, Lectures on Algebraic Topology, European Math. Soc., Zuerich, Switzerland, 2006 | MR | Zbl
[3] H. Edelsbrunner, J. Harer, Computational Topology: An Introduction, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl
[4] N. P. Dolbilin, “Properties of Faces of Parallelohedra”, Proc. Steklov Inst. Math., 266, 2009, 105–119 | DOI | MR | Zbl
[5] B. N. Delone, “Geometry of positive quadratic forms”, Uspekhi Matem. Nauk, 1937, no. 3, 16–62 (in Russian)
[6] GTTL, Moscow, 1950 | MR
[7] S. V. Matveev, Algorithmic Topology and Classification of 3-manifolds, Springer ACM-monographs, 2003 ; MTsMNO, Moscow, 2007 | MR
[8] Russian Math. Surveys | DOI | Zbl
[9] A. O. Ivanov, A. A. Tuzhilin, Branching Solutions to One-Dimensional Variational Problems, World Scientific, Singapore, 2000 | MR
[10] A. O. Ivanov, A. A. Tuzhilin, Extreme Networks Theory, Inst. Komp. Issl., Moscow–Izhevsk, 2003 (in Russian)
[11] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling”, Matem. Sbornik, 203 (2012), 65–118, arXiv: 1101.0106v2[math.MG] | DOI | MR | Zbl
[12] I. Pak, Lectures on Discrete and Polyhedral Geometry, Manuscript, http://www.math.ucla.edu/\allowbreakp̃ak/book.htm
[13] H. Kaplan, J. Matoušek, M. Sharir, “Simple proofs of classical theorems in discrete geometry via the Guth–Katz polynomial partitioning technique”, Discrete Comput. Geom., 48 (2012), 499–517 | DOI | MR | Zbl
[14] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, C. Yap, “Classroom examples of robustness problems in geometric computations”, Computational Geometry: Theory and Applications, 40 (2008), 61–78 | DOI | MR | Zbl
[15] K. Mehlhorn, C. Yap, Robust Geometric Computation, Manuscript, http://cs.nyu.edu/yap/book/egc/
[16] G. Liotta, F. P. Preparata, R. Tamassia, “Robust proximity queries: An illustration of degree-driven algorithmic design”, SIAM Journal on Computing, 28 (1999), 864–889 | DOI | MR | Zbl
[17] C. Burnikel, S. Funke, M. Seel, “Exact geometric computation using cascading”, International Journal of Computational Geometry and Applications, 11 (2001), 245–266 | DOI | MR | Zbl
[18] S. Funke, C. Klein, K. Mehlhorn, S. Schmitt, “Controlled perturbation for Delaunay triangulations”, Symposium on Discrete Algorithms, 2005, 1047–1056 | MR
[19] D. Halperin, E. Leiserowitz, “Controlled perturbation for arrangements of circles”, Symposium on Computational Geometry, 2003, 264–273 | MR
[20] K. Mehlhorn, R. Osbild, M. Sagraloff, “A general approach to the analysis of controlled perturbation algorithms”, Computational Geometry: Theory and Applications, 44 (2011), 507–528 | DOI | MR | Zbl
[21] H. Brönimann, C. Burnikel, S. Pion, “Interval arithmetic yields efficient dynamic filters for computational geometry”, Discrete Applied Mathematics, 109 (2001), 25–47 | DOI | MR
[22] O. Devillers, S. Pion, “Efficient exact geometric predicates for Delaunay triangulations”, 5th Workshop on Algorithm Engineering and Experiments (ALENEX), 2003
[23] M. Kerber, Geometric Algorithms for Algebraic Curves and Surfaces, PhD Thesis, Saarland University, 2009 http://www.mpi-inf.mpg.de/m̃kerber/kerber_diss.pdf