Balls in sequence spaces
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 109-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. For example, the measure of a ball is discontinuous at every binary rational value of $\log r$, where $r$ is the radius.
Keywords: entropy, nonparametric statistic, ball, Bernoulli's measure.
@article{MAIS_2012_19_2_a7,
     author = {E. A. Timofeev},
     title = {Balls in sequence spaces},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a7/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Balls in sequence spaces
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 109
EP  - 114
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a7/
LA  - ru
ID  - MAIS_2012_19_2_a7
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Balls in sequence spaces
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 109-114
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a7/
%G ru
%F MAIS_2012_19_2_a7
E. A. Timofeev. Balls in sequence spaces. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 109-114. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a7/

[1] M. Deza, T. Deza, Encyclopedia of Distances, Springer, 2009 | MR

[2] P. Grassberger, “Estimating the information content of symbol sequences and efficient codes”, IEEE Trans. Inform. Theory, 35 (1989), 669–675 | DOI | MR

[3] A. Kaltchenko, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl

[4] A. Kaltchenko, N. Timofeeva, “Rate of convergence of the nearest neighbor entropy estimator”, AEU – International Journal of Electronics and Communications, 64:1 (2010), 75–79 | DOI

[5] E. A. Timofeev, “Statistical Estimation of measure invariants”, St. Petersburg Math. J., 17:3 (2006), 527–551 | DOI | MR | Zbl

[6] E. A. Timofeev, “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR