Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_2_a1, author = {A. D. Uvarov}, title = {Stable sheave moduli of rank~$2$ with {Chern} classes $c_1=-1$, $c_2=2$, $c_3=0$ on $Q_3$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {19--39}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a1/} }
TY - JOUR AU - A. D. Uvarov TI - Stable sheave moduli of rank~$2$ with Chern classes $c_1=-1$, $c_2=2$, $c_3=0$ on $Q_3$ JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 19 EP - 39 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a1/ LA - ru ID - MAIS_2012_19_2_a1 ER -
A. D. Uvarov. Stable sheave moduli of rank~$2$ with Chern classes $c_1=-1$, $c_2=2$, $c_3=0$ on $Q_3$. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 19-39. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a1/
[1] D. I. Artamkin, “Svoistva stabilnykh puchkov ranga 2 na trekhmernoi kvadrike”, Yaroslavskii pedagogicheskii vestnik, 1–2, YaGPU, Yaroslavl, 2004, 83–88
[2] P. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR
[3] A. D. Uvarov, “Kompaktifikatsiya mnogoobraziya modulei $M_{Q}(-1,2)$ stabilnykh vektornykh rassloenii ranga 2 na trekhmernoi kvadrike”, Yaroslavskii pedagogicheskii vestnik, 3, Estestvennye nauki, YaGPU, Yaroslavl, 2011, 40–47
[4] K. Okonek, M. Shneider, Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl
[5] M. Szurek, J. Wisniewski, “Fano bundles on Fine Moduli Spaces over $\mathbb{P}_{3}$”, Pacific Journal of Mathematics, 141 (1990), 197–208 | MR | Zbl
[6] A. Tyurin, The moduli spaces of vector bundles on threefolds, surfaces and curves I, Erlangen, 1990
[7] J. Wisniewski, “Ruled Fano 4-folds of index 2”, Proceedings of the American Mathematical society, 105, 1983, 55–61 | DOI | MR
[8] J. Ottaviani, M. Szurek, “On moduli of stable 2-bundles with small chern classes on $Q_{3}$”, Annali di Matematica Pura ed Applicata CLXVII, 1994, 191–241 | DOI | MR | Zbl
[9] D. Markushevich, A. Tikhomirov, “The Abel–Jakobi map of a moduli component of vector bundles on the cubic threefold”, J. Algebraic Geometry, 10 (2001), 11–22 | MR
[10] D. Markushevich, A. Tikhomirov, “A parametrization of the theta divisor of quartic double solid”, Intern. Math. Res., 51 (2003), 2747–2778 | DOI | MR | Zbl
[11] N. Perrin, “Mt Limites de fibres vectoriels dans $M_Q_3(0,2)$”, Compte Rendus Acad. Sci., 334, Paris, 2002, 779–782 | MR | Zbl
[12] L. Ein, I. Sols, “Stable vector bundles on quadric hypersurfaces”, Nagoya Math. J., 96 (1984), 11–22 | MR | Zbl
[13] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl
[14] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18 (1978), 557–614 | MR | Zbl
[15] D. I. Artamkin, “Komponenta ne lokalno svobodnykh polustabilnykh puchkov ranga 2 na trekhmernoi kvadrike”, Materialy konferentsii “Chteniya Ushinskogo”, YaGPU, Yaroslavl, 2004, 6–13
[16] C. Banica, M. Putinar, G. Schumacher, “Variation der globalen Ext in Deformationen kompakter komplexer Raume”, Mathematische Annalen, 250 (1980), 135–155 | DOI | MR | Zbl
[17] A. Strømme, “Ample Divisors on fine Moduli spaces on progective plane”, Math. Z., 187 (1984), 405–423 | DOI | MR | Zbl
[18] D. Huybrechts, M. Lehn, “The Geometry of Moduli spaces of sheaves”, Aspects of Mathematics E 31, Vieweg, Braunschweig, 1997 | MR | Zbl
[19] H. Lange, “Universal Families of Extensions”, Journal of Algebra, 83 (1983), 101–112 | DOI | MR | Zbl
[20] K. Hulek, A. Van de Ven, “he Horrocks–Mumford bundle and the Ferrand construction”, Manuscripta Math., 50 (1985), 313–335 | DOI | MR | Zbl