On the Lassak conjecture for a convex body
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 3, pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C\subset\mathbb R^n$, then $\sum_{i=1}^n 1/w_i\geq 1$. Here $w_i$ denotes the width of $C$ in the direction of the $i$th coordinate axis. The paper contains a new proof of this statement for $n=2$. Also we show that if a translate of $[0,1]^n$ can be inscribed into the $n$-dimensional simplex, then for this simplex holds $\sum_{i=1}^n 1/w_i= 1$.
Keywords: convex body, width, axial diameter, homothety, projection.
Mots-clés : simplex, interpolation
@article{MAIS_2011_18_3_a0,
     author = {M. V. Nevskii},
     title = {On the {Lassak} conjecture for a convex body},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a0/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On the Lassak conjecture for a convex body
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 5
EP  - 11
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a0/
LA  - ru
ID  - MAIS_2011_18_3_a0
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On the Lassak conjecture for a convex body
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 5-11
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a0/
%G ru
%F MAIS_2011_18_3_a0
M. V. Nevskii. On the Lassak conjecture for a convex body. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a0/

[1] M. V. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Mat. zametki, 87:4 (2010), 580–593 | MR | Zbl

[2] M. Nevskii, “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[3] M. Lassak, “Relationships between widths of a convex body and of an inscribed parallelotope”, Bull. Austral. Math. Soc., 63 (2001), 133–140 | DOI | MR | Zbl

[4] M. Lassak, “Approximation of convex bodies by rectangles”, Geom. Dedic., 47 (1993), 111–117 | DOI | MR | Zbl

[5] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford, 36:2 (1985), 359–362 | DOI | MR | Zbl