Principles of constructing layered neural networks based on pulse neurons
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 65-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we describe principles of pulse implementation of multilayer neural networks using biologically plausible neurons. It is shown that the multilayer perceptron can be modeled with a neural network composed of pulse neurons using impulse information coding.
Keywords: Impulse coding of information, asymptotic analysis, McCulloch–Pits neuron
Mots-clés : multilayer perceptron.
@article{MAIS_2011_18_2_a4,
     author = {O. A. Dunaeva},
     title = {Principles of constructing layered neural networks based on pulse neurons},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a4/}
}
TY  - JOUR
AU  - O. A. Dunaeva
TI  - Principles of constructing layered neural networks based on pulse neurons
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 65
EP  - 76
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a4/
LA  - ru
ID  - MAIS_2011_18_2_a4
ER  - 
%0 Journal Article
%A O. A. Dunaeva
%T Principles of constructing layered neural networks based on pulse neurons
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 65-76
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a4/
%G ru
%F MAIS_2011_18_2_a4
O. A. Dunaeva. Principles of constructing layered neural networks based on pulse neurons. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a4/

[1] W. Gerstner, “What's different with spiking neurons?”, Plausible Neural Networks for Biological Modelling, eds. Henk Mastebroek and Hans Vos, Kluwer Academic Publishers, 2001, 23–48 | Zbl

[2] W. Maass, “Fast sigmoidal networks via spiking neurons”, Neural Computation, 9 (1997), 279–304 | DOI | Zbl

[3] W. Maass, T. Natschläger, “Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding”, Network: Computation in Neural Systems, 9:4 (1997), 355–372 | DOI

[4] V. V. Maiorov, I. Yu. Myshkin, “Matematicheskoe modelirovanie neironnoi seti na osnove uravnenii s zapazdyvaniem”, Matematicheskoe modelirovanie, 2:11 (1990), 64–76 | MR

[5] S. A. Kaschenko, V. V. Maiorov, “Model adaptatsii koltsevykh neironnykh ansamblei”, Radiotekhnika i Elektronika, 43:11 (1998), 1–7

[6] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, LIBROKOM, M., 2009, 288 pp.

[7] V. V. Maiorov, M. L. Myachin, I. V. Paramonov, “Popravka k periodu resheniya uravneniya, modeliruyuschego dinamiku membrannogo potentsiala neirona”, Modelirovanie i analiz informatsionnykh sistem, 15:2 (2008), 61–66

[8] O. A. Dunaeva, “Utochnenie otsenki latentnogo perioda dlya neironov s sinapticheskim vzaimodeistviem”, Modelirovanie i analiz informatsionnykh sistem, 16:4 (2009), 46–55

[9] F. Uossermen, Neirokompyuternaya tekhnika: Teoriya i praktika, Mir, M., 1992, 184 pp.