Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2011_18_2_a3, author = {M. V. Nevskii}, title = {On geometric characteristics of an $n$-dimensional simplex}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {52--64}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/} }
M. V. Nevskii. On geometric characteristics of an $n$-dimensional simplex. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 52-64. http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/
[1] M. B. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Model. i analiz infopm. sistem, 13:2 (2006), 16–29
[2] M. V. Nevskii, “Ob odnom sootnoshenii dlya minimalnoi normy interpolyatsionnogo proektora”, Model. i analiz infopm. sistem, 16:1 (2009), 24–43
[3] M. V. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Mat. zametki, 87:4 (2010), 580–593 | MR | Zbl
[4] M. V. Nevskii, “Svoistva osevykh diametrov simpleksa” (to appear)
[5] M. Y. Balla, Approximation of convex bodies by parallelotopes, Internal Report, International Centre for Theoretical Physics, Trieste, Italy, 1987, 5 pp. | Zbl
[6] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl
[7] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl
[8] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford, 36:2 (1985), 359–362 | DOI | MR | Zbl
[9] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl