On geometric characteristics of an $n$-dimensional simplex
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 52-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove and discuss some propositions for geometric characteristics of an $n$-dimensional simplex. Also we note the connection with linear interpolation on the cube $[0,1]^n$.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, axial diameter, linear interpolation, projection.
@article{MAIS_2011_18_2_a3,
     author = {M. V. Nevskii},
     title = {On geometric characteristics of an $n$-dimensional simplex},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On geometric characteristics of an $n$-dimensional simplex
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 52
EP  - 64
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/
LA  - ru
ID  - MAIS_2011_18_2_a3
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On geometric characteristics of an $n$-dimensional simplex
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 52-64
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/
%G ru
%F MAIS_2011_18_2_a3
M. V. Nevskii. On geometric characteristics of an $n$-dimensional simplex. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 52-64. http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a3/

[1] M. B. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Model. i analiz infopm. sistem, 13:2 (2006), 16–29

[2] M. V. Nevskii, “Ob odnom sootnoshenii dlya minimalnoi normy interpolyatsionnogo proektora”, Model. i analiz infopm. sistem, 16:1 (2009), 24–43

[3] M. V. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Mat. zametki, 87:4 (2010), 580–593 | MR | Zbl

[4] M. V. Nevskii, “Svoistva osevykh diametrov simpleksa” (to appear)

[5] M. Y. Balla, Approximation of convex bodies by parallelotopes, Internal Report, International Centre for Theoretical Physics, Trieste, Italy, 1987, 5 pp. | Zbl

[6] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[7] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl

[8] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford, 36:2 (1985), 359–362 | DOI | MR | Zbl

[9] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl