On tensor squares of reducible representations of almost simple groups.~II
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost simple $\mathrm{SM}_m$-groups are considered. A group $G$ is called $\mathrm{SM}_m$-group if the tensor square of any irreducible representation is decomposed into the sum of all characters with multiplicities not greater than $m$. It turned out that if $G$ is an almost simple $\mathrm{SM}_t$-group, then $G\cong PGL_2(q)$.
Keywords: SR-groups, SM$_m$-groups almost simple groups automorphisms GAP.
@article{MAIS_2011_18_2_a0,
     author = {S. V. Polyakov},
     title = {On tensor squares of reducible representations of almost simple {groups.~II}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a0/}
}
TY  - JOUR
AU  - S. V. Polyakov
TI  - On tensor squares of reducible representations of almost simple groups.~II
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 5
EP  - 17
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a0/
LA  - ru
ID  - MAIS_2011_18_2_a0
ER  - 
%0 Journal Article
%A S. V. Polyakov
%T On tensor squares of reducible representations of almost simple groups.~II
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 5-17
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a0/
%G ru
%F MAIS_2011_18_2_a0
S. V. Polyakov. On tensor squares of reducible representations of almost simple groups.~II. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 2, pp. 5-17. http://geodesic.mathdoc.fr/item/MAIS_2011_18_2_a0/