On tensor squares of irreducible representations of almost simple groups.~I
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141
Voir la notice de l'article provenant de la source Math-Net.Ru
Almost simple $\mathrm{SM}_m$-groups are considered. A group $G$ is called a $\mathrm{SM}_m$-group if the tensor square of any irreducible representation is decomposed into the sum of its irreducible representations with multiplicities not greater than $m$. In the first part of this article we consider simple groups. It turned out that among them only groups $L_2(q)$, $q=2^t$, $t>1$, are $\mathrm{SM}_2$-groups.
Keywords:
SR-groups, SM$_m$-groups, almost simple groups, automorphisms, GAP.
@article{MAIS_2011_18_1_a11,
author = {S. V. Polyakov},
title = {On tensor squares of irreducible representations of almost simple {groups.~I}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {130--141},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/}
}
TY - JOUR AU - S. V. Polyakov TI - On tensor squares of irreducible representations of almost simple groups.~I JO - Modelirovanie i analiz informacionnyh sistem PY - 2011 SP - 130 EP - 141 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/ LA - ru ID - MAIS_2011_18_1_a11 ER -
S. V. Polyakov. On tensor squares of irreducible representations of almost simple groups.~I. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/