On tensor squares of irreducible representations of almost simple groups.~I
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost simple $\mathrm{SM}_m$-groups are considered. A group $G$ is called a $\mathrm{SM}_m$-group if the tensor square of any irreducible representation is decomposed into the sum of its irreducible representations with multiplicities not greater than $m$. In the first part of this article we consider simple groups. It turned out that among them only groups $L_2(q)$, $q=2^t$, $t>1$, are $\mathrm{SM}_2$-groups.
Keywords: SR-groups, SM$_m$-groups, almost simple groups, automorphisms, GAP.
@article{MAIS_2011_18_1_a11,
     author = {S. V. Polyakov},
     title = {On tensor squares of irreducible representations of almost simple {groups.~I}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/}
}
TY  - JOUR
AU  - S. V. Polyakov
TI  - On tensor squares of irreducible representations of almost simple groups.~I
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 130
EP  - 141
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/
LA  - ru
ID  - MAIS_2011_18_1_a11
ER  - 
%0 Journal Article
%A S. V. Polyakov
%T On tensor squares of irreducible representations of almost simple groups.~I
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 130-141
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/
%G ru
%F MAIS_2011_18_1_a11
S. V. Polyakov. On tensor squares of irreducible representations of almost simple groups.~I. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/

[1] E. P. Wigner, “On representations of finite groups”, Amer. J. Math., 63 (1941), 57–63 | DOI | MR | Zbl

[2] D. Gorenstein, Finite groups, Harper and Row, N.Y., 1968 | MR | Zbl

[3] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Willey, 1985 | MR | Zbl

[4] P. X. Gallagher, “The number of conjugacy classes in a finite group”, Math. Z., 118 (1970), 175–179 | DOI | MR | Zbl

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 http://brauer.maths.qmul.ac.uk/Atlas/v3/ | MR | Zbl

[6] I. G. Macdonald, “Numbers of conjugacy classes in some finite classical groups”, Bull. Austral. Math. Soc., 23:1 (1981), 23–48 | DOI | MR | Zbl

[7] M. Liebeck, L. Pyber, “Upper bounds for the number of conjugacy classes of a finite group”, J. Algebra, 198 (1997), 538–562 | DOI | MR | Zbl

[8] A. Maróti, “Bounding the number of conjugacy classes of a permutation group”, Journal of Group Theory, 8:3 (2005), 273–289 | DOI | MR | Zbl

[9] A. I. Kostrikin, Vvedenie v algebru, chast 3. Osnovnye struktury algebry, Fizmatlit, M., 2000

[10] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izdanie 16-e, dopolnennoe, vklyuchayuschee Arkhiv reshennykh zadach, IM SO RAN, Novosibirsk, 2006

[11] L. S. Kazarin, V. V. Yanishevskii, “O konechnykh prosto privodimykh gruppakh”, Algebra i analiz, 19:6 (2007), 86–116 | MR

[12] L. S. Kazarin, I. A. Sagirov, “On the degrees of irreducible characters of finite simple groups”, Proc. of the Steklov Inst. Math. Suppl., 2001, suppl. 2, S71–S81 | MR | Zbl

[13] The GAP Group, GAP — Groups, Algorithms and Programming, Version 4.4.10, Aachen, St. Andrews, 2008 http://www.gap-system.org

[14] L. S. Kazarin, E. I. Chankov, “Konechnye prosto privodimye gruppy razreshimy”, Matematicheskii sbornik, 201:5 (2010), 27–40 | MR