On tensor squares of irreducible representations of almost simple groups.~I
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost simple $\mathrm{SM}_m$-groups are considered. A group $G$ is called a $\mathrm{SM}_m$-group if the tensor square of any irreducible representation is decomposed into the sum of its irreducible representations with multiplicities not greater than $m$. In the first part of this article we consider simple groups. It turned out that among them only groups $L_2(q)$, $q=2^t$, $t>1$, are $\mathrm{SM}_2$-groups.
Keywords: SR-groups, SM$_m$-groups, almost simple groups, automorphisms, GAP.
@article{MAIS_2011_18_1_a11,
     author = {S. V. Polyakov},
     title = {On tensor squares of irreducible representations of almost simple {groups.~I}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/}
}
TY  - JOUR
AU  - S. V. Polyakov
TI  - On tensor squares of irreducible representations of almost simple groups.~I
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 130
EP  - 141
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/
LA  - ru
ID  - MAIS_2011_18_1_a11
ER  - 
%0 Journal Article
%A S. V. Polyakov
%T On tensor squares of irreducible representations of almost simple groups.~I
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 130-141
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/
%G ru
%F MAIS_2011_18_1_a11
S. V. Polyakov. On tensor squares of irreducible representations of almost simple groups.~I. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a11/