Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2010_17_4_a1, author = {M. Anikeev and F. Madlener and A. Schlosser and S. A. Huss and C. Walther}, title = {Automated correctness proof of algorithm variants in elliptic curve cryptography}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {7--16}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_4_a1/} }
TY - JOUR AU - M. Anikeev AU - F. Madlener AU - A. Schlosser AU - S. A. Huss AU - C. Walther TI - Automated correctness proof of algorithm variants in elliptic curve cryptography JO - Modelirovanie i analiz informacionnyh sistem PY - 2010 SP - 7 EP - 16 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2010_17_4_a1/ LA - en ID - MAIS_2010_17_4_a1 ER -
%0 Journal Article %A M. Anikeev %A F. Madlener %A A. Schlosser %A S. A. Huss %A C. Walther %T Automated correctness proof of algorithm variants in elliptic curve cryptography %J Modelirovanie i analiz informacionnyh sistem %D 2010 %P 7-16 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2010_17_4_a1/ %G en %F MAIS_2010_17_4_a1
M. Anikeev; F. Madlener; A. Schlosser; S. A. Huss; C. Walther. Automated correctness proof of algorithm variants in elliptic curve cryptography. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 4, pp. 7-16. http://geodesic.mathdoc.fr/item/MAIS_2010_17_4_a1/
[1] R. S. Boyer, J. S. Moore, “Proof checking the RSA public key encryption algorithm”, American Mathematical Monthly, 91:3 (1984), 181–189 | DOI | MR | Zbl
[2] J. Duan, J. Hurd, G. Li, S. Owens, K. Slind, J. Zhang, “Functional Correctness Proofs of Encryption Algorithms”, LPAR, LNCS, 3835, eds. G. Sutcliffe, A. Voronkov, Springer, 2005, 519–533 | Zbl
[3] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-Verlag, 2004, 311 pp. | MR | Zbl
[4] J. Hurd, M. Gordon, A. Fox, Formalized Elliptic Curve Cryptography, High Confidence Software and Systems: HCSS, 2006
[5] N. Koblitz, “Elliptic Curve Cryptosytems”, Mathematics of Computation, 48:177 (1987), 203–209 | DOI | MR | Zbl
[6] A. K. Lenstra, E. R. Verheul, “The XTR Public Key System”, CRYPTO 2000, Lecture Notes in Computer Science, 1880, 2000, 1–19 | MR | Zbl
[7] V. S. Miller, “Use of elliptic curves in cryptography”, CRYPTO85, Lecture Notes in Computer Science, 218, ed. H. C. Williams, 1985, 417–426 | MR
[8] A. Riazanov, A. Voronkov, “The Design and Implementation of VAMPIRE”, AI Communications, 15, no. 2, IOS Press, 2002, 91–110 | Zbl
[9] R. L. Rivest, A. Shamir, L. Adleman, “A Method of Obtaining Digital Signaturtes and Public-Key Cryptosystems”, Communications of the ACM, 21 (1978), 120–126 | DOI | MR | Zbl
[10] S. Schulz, “System Abstract: E 0.81”, 2nd International Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, 3097, jul., eds. D. Basin, M. Rusinowitch, Springer-Verlag, 2004, 223–228 | MR | Zbl
[11] C. Walther, M. Aderhold, A. Schlosser, The $\mathcal{L}$ 1.0 Primer, Technical Report VFR 06/01, Programmiermethodik, Technische Universität Darmstadt, Germany, Apr. 2006
[12] C. Walther and others, VeriFun: A Verifier for Functional Programs, 2006
[13] C. Walther, S. Schweitzer, “A Machine Supported Proof of the Unique Prime Factorization Theorem”, Proc. of the 5th Workshop on Tools for System Design and Verification (FM-TOOLS 2002), 2002-11, eds. D. Haneberg, G. Schellhorn, W. Reif, Institut für Informatik, Universität Augsburg, Augsburg, 2002, 39–45
[14] L. Théry, Proving the group law for elliptic curves formally INRIA, Technical Report 0330, Sophia Antipolis, 2007