A method of determining the execution frequency of program basic blocks
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 2, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this article is to consider the task of determining the execution frequency of program basic blocks. This task is important for such applications as program optimization, paralleling program execution, computing resources allocation, program compaction, and malicious software detection. A new method is proposed in the article for evaluation of basic block execution frequency based on the Monte Carlo method. The method proposed allows us to estimate a number of program runs to get the execution frequency with a given precision.
Keywords: execution frequency, program analysis, Monte Carlo method, profiling.
@article{MAIS_2010_17_2_a7,
     author = {A. V. Shalimov},
     title = {A method of determining the execution frequency of program basic blocks},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a7/}
}
TY  - JOUR
AU  - A. V. Shalimov
TI  - A method of determining the execution frequency of program basic blocks
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 122
EP  - 132
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a7/
LA  - ru
ID  - MAIS_2010_17_2_a7
ER  - 
%0 Journal Article
%A A. V. Shalimov
%T A method of determining the execution frequency of program basic blocks
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 122-132
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a7/
%G ru
%F MAIS_2010_17_2_a7
A. V. Shalimov. A method of determining the execution frequency of program basic blocks. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 2, pp. 122-132. http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a7/

[1] R. L. Smelianski, T. Alanko, “On the calculation of control transition probabilities in a program Inform”, Processing Letters, 1986, no. 3

[2] R. L. Smelyanskii, D. E. Gurev, A. G. Bakhmurov, “Ob odnoi matematicheskoi modeli dlya rascheta dinamicheskikh kharakteristik programmy”, Programmirovanie, 1986, no. 6

[3] Wu Youfeng, R. Larus James, “Static Branch Frequency and Program Profile Analysis”, Proceedings of the 27th annual international symposium on Microarchitecture, 1994, 1–11

[4] Ball Thomas, R. Larus James, “Optimally profiling and tracing programs”, ACM Transactions on Programming Languages and Systems (TOPLAS), 1994, 1319–1360 | DOI

[5] V. A. Skripkin, E. A. Moiseenko, Matematicheskie metody issledovaniya operatsii v voennom dele, Voennoe izdatelstvo ministerstva oborony SSSR, M., 1979

[6] B. V. Gnedenko, Kurs teorii veroyatnostei, 7-e izd., URSS, M., 2001, 448 pp. | MR

[7] V. Korolev, I. Shevtsova, “An improvement of the Berry-Esseen inequality with applications to Poisson and Mixed Poisson random sums”, Scandinavian Actuarial Journal, 2010 (to appear)

[8] Documentation for the LLVM System [HTML] http://llvm.cs.uiuc.edu/docs/

[9] The GNU Compiler Collection [HTML] http://gcc.gnu.org/

[10] A. V. Shalimov, “Metod kompaktnogo predstavleniya programm na osnove chastotnykh kharakteristik ikh povedeniya”, Intellektualizatsiya obrabotki informatsii, Tezisy dokladov Mezhdunarodnoi nauchnoi konferentsii, Krymskii nauchnyi tsentr NAN Ukrainy, Simferopol, 2008