An algorithm of converting business-process models into monochrome Petri nets on the basis of matrix formulas
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 2, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mechanism allowing the unique conversion of an event-based business process model of the ARIS EPC format into a monochrome Petri net is suggested. The Petri net matrix representation resulting from this conversion allows investigating a business process topology and finding cycles and dead-ends. Moreover the Petri net matrix representation allows finding net invariants thus solving a task of finding all the business process development variants.
Keywords: business-process, Petri net
Mots-clés : invariant.
@article{MAIS_2010_17_2_a0,
     author = {M. G. Dorrer},
     title = {An algorithm of converting business-process models into monochrome {Petri} nets on the basis of matrix formulas},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a0/}
}
TY  - JOUR
AU  - M. G. Dorrer
TI  - An algorithm of converting business-process models into monochrome Petri nets on the basis of matrix formulas
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 5
EP  - 16
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a0/
LA  - ru
ID  - MAIS_2010_17_2_a0
ER  - 
%0 Journal Article
%A M. G. Dorrer
%T An algorithm of converting business-process models into monochrome Petri nets on the basis of matrix formulas
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 5-16
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a0/
%G ru
%F MAIS_2010_17_2_a0
M. G. Dorrer. An algorithm of converting business-process models into monochrome Petri nets on the basis of matrix formulas. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 2, pp. 5-16. http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a0/

[1] http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[2] K. Jensen, Coloured Petri nets: Basic concepts, analysis methods and practical use, v. 1, Basic concepts, Springer-Verlag, Berlin, 1996

[3] Aalst Vil van der, Khei Keis van, Upravlenie potokami rabot: modeli, metody i sistemy, Fizmatlit, M., 2007

[4] G. A. Dorrer, “Issledovanie i proektirovanie regionalnykh informatsionno-telekommunikatsionnykh sistem na osnove imitatsionnogo modelirovaniya”, Vestnik SibGTU, 1999, no. 1, 146–159

[5] M. G. Dorrer, V. V. Kurokhtin, “Reshenie zadachi pryamogo i obratnogo preobrazovaniya mezhdu tsvetnoi setyu Petri i modelyu biznes-protsessov”, Vestnik Sibirskogo Gosudarstvennogo Aerokosmicheskogo Universiteta, 2006, no. 5, 83–87, SibGAU, Krasnoyarsk

[6] G. N. Kalyanov, Teoriya i praktika reorganizatsii biznes-protsessov, SINTEG, M., 2000

[7] M. Kamennova, A. Gromov, M. Ferapontov, A. Shmatalyuk, Modelirovanie biznesa. Metodologiya ARIS: Prakticheskoe rukovodstvo, Vest-Metatekhnologiya, M., 2001

[8] V. E. Kotov, Seti Petri, Nauka, M., 1984 | MR

[9] A. V. Sheer, Biznes-protsessy. Osnovnye ponyatiya. Teoriya. Metody, Per. s angl., 2-e izd., ispr. i dop., Prosvetitel, M., 1999

[10] A. V. Sheer, Modelirovanie biznes-protsessov, Per. s angl., 2-e izd., ispr. i dop., Serebryanye niti, M., 2000