On the number of facets of a 2-neighborly polytope
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 76-82

Voir la notice de l'article provenant de la source Math-Net.Ru

A $d$-polytope $P$ is $2$-neighborly if each $2$ vertices of $P$ determine an edge. It is conjectured that the number $f_0(P)$ of vertices for such polytope does not exceed the number $f_{d-1}(P)$ of facets. The conjecture is separately proved for $d7$ and for $f_0(P)$.
Keywords: 2-neighborly polytopes, number of facets.
@article{MAIS_2010_17_1_a5,
     author = {A. N. Maksimenko},
     title = {On the number of facets of a 2-neighborly polytope},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/}
}
TY  - JOUR
AU  - A. N. Maksimenko
TI  - On the number of facets of a 2-neighborly polytope
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 76
EP  - 82
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/
LA  - ru
ID  - MAIS_2010_17_1_a5
ER  - 
%0 Journal Article
%A A. N. Maksimenko
%T On the number of facets of a 2-neighborly polytope
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 76-82
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/
%G ru
%F MAIS_2010_17_1_a5
A. N. Maksimenko. On the number of facets of a 2-neighborly polytope. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 76-82. http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/