On the number of facets of a 2-neighborly polytope
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 76-82
Voir la notice de l'article provenant de la source Math-Net.Ru
A $d$-polytope $P$ is $2$-neighborly if each $2$ vertices of $P$ determine an edge. It is conjectured that the number $f_0(P)$ of vertices for such polytope does not exceed the number $f_{d-1}(P)$ of facets. The conjecture is separately proved for $d7$ and for $f_0(P)$.
Keywords:
2-neighborly polytopes, number of facets.
@article{MAIS_2010_17_1_a5,
author = {A. N. Maksimenko},
title = {On the number of facets of a 2-neighborly polytope},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {76--82},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/}
}
A. N. Maksimenko. On the number of facets of a 2-neighborly polytope. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 76-82. http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a5/