On a reachability set of automaton counter machines
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 52-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of automaton counter machines are investigated. We prove that reachability sets of automaton one-counter machines are semilinear. An algorithm of construction of these semilinear reachability sets is resulted. Besides, it is shown that reachability sets of reversal-bounded automaton counter machines and reachability sets of flat automaton counter machines are also semilinear.
Keywords: abstract counter machines, automaton counter machine, Communicating Colouring Automata, reachability sets, semilinear sets.
@article{MAIS_2010_17_1_a3,
     author = {E. V. Kuz'min and D. Yu. Chalyi},
     title = {On a reachability set of automaton counter machines},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/}
}
TY  - JOUR
AU  - E. V. Kuz'min
AU  - D. Yu. Chalyi
TI  - On a reachability set of automaton counter machines
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 52
EP  - 64
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/
LA  - ru
ID  - MAIS_2010_17_1_a3
ER  - 
%0 Journal Article
%A E. V. Kuz'min
%A D. Yu. Chalyi
%T On a reachability set of automaton counter machines
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 52-64
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/
%G ru
%F MAIS_2010_17_1_a3
E. V. Kuz'min; D. Yu. Chalyi. On a reachability set of automaton counter machines. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 52-64. http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/

[1] A. Annichini, A. Bouajjani, M. Sighireanu, “TReX: A tool for reachability analysis of complex systems”, LNCS, 2102, Springer, 2001, 368–372 | Zbl

[2] T. Araki, T. Kasami, “Decidable problems on the strong connectivity of Petri net reachability sets”, Theoretical Computer Science, 4:1 (1977), 99–119 | DOI | MR | Zbl

[3] S. Bardin, J. Leroux, G. Point, “FAST extended release”, LNCS, 4144, Springer, 2006, 63–66 | MR

[4] J. Esparza, “Petri nets, commutative context-free grammars, and basic parallel processes”, Fundamenta Informatica, 31:1 (1997), 13–25 | MR | Zbl

[5] A. Finkel, J. Leroux, “How to compose Presburger-accelerations: Applications to broadcast protocols”, LNCS, 2556, Springer, 2002, 145–156 | MR | Zbl

[6] A. Finkel, A. Sangnier, “Reversal-bounded Counter Machines Revisited”, LNCS, 5162, Springer, 2008, 323–334 | MR | Zbl

[7] J. E. Hopcroft, J. Pansiot, “On the Reachability Problem for 5-Dimensional Vector Addition Systems”, Computer science technical report, 1976, Cornell University http://hdl.handle.net/1813/6102

[8] O. H. Ibarra, “Reversal-bounded multicounter machines and their decision problems”, J. ACM, 25:1 (1978), 116–133 | DOI | MR | Zbl

[9] D. König, Theorie der Endlichen und Unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig, 1936

[10] E. V. Kouzmin, V. A. Sokolov, “Communicating Colouring Automata”, Proc. Int. Workshop on Program Understanding (sat. of PSI'03), 2003, 40–46

[11] E. V. Kuzmin, V. A. Sokolov, D. Ju. Chaly, “Automaton Counter Machines”, Proc. of Int. Workshop on Program Understanding (sat. of PSI'09), 2009, 1–4

[12] LASH. http://www.montefiore.ulg.ac.be/b̃oigelot/research/lash

[13] J. Leroux, G. Sutre, “Flat counter almost everywhere!”, LNCS, 3707, Springer, 2005, 474–488 | Zbl

[14] E. W. Mayr, “Persistence of vector replacement systems is decidable”, Acta Informatica, 15 (1981), 309–318 | DOI | MR | Zbl

[15] E. W. Mayr, “An algorithm for the general Petri net reachability problem”, SIAM J. Comput., 13:3 (1984), 441–460 | DOI | MR | Zbl

[16] M. Presburger, “Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt”, Sprawozdanie z I Kongresu matematyków krajów slowiańskich, Warsaw, 1930, 92–101 | Zbl

[17] G. Vidal-Naquet, “Petri nets and regular languages”, J. Comput. Syst. Sci., 23:3 (1981), 299–325 | DOI | MR | Zbl

[18] S. Ginzburg, Matematicheskaya teoriya kontekstno-svobodnykh yazykov, Mir, M., 1970, 328 pp.

[19] E. V. Kuzmin, V. A. Sokolov, “Vzaimodeistvuyuschie raskrashivayuschie protsessy”, Modelirovanie i analiz informatsionnykh sistem, 11:2 (2004), 8–17

[20] E. V. Kuzmin, D. Yu. Chalyi, “Ob odnom klasse schetchikovykh mashin”, Modelirovanie i analiz informatsionnykh sistem, 16:2 (2009), 75–82 | MR

[21] E. V. Kuzmin, D. Yu. Chalyi, “O mnozhestve dostizhimosti avtomatnykh trekhschetchikovykh mashin”, Modelirovanie i analiz informatsionnykh sistem, 16:3 (2009), 77–84

[22] M. Minskii, Vychisleniya i avtomaty, Mir, M., 1971, 268 pp. | MR