Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2010_17_1_a3, author = {E. V. Kuz'min and D. Yu. Chalyi}, title = {On a reachability set of automaton counter machines}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {52--64}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/} }
TY - JOUR AU - E. V. Kuz'min AU - D. Yu. Chalyi TI - On a reachability set of automaton counter machines JO - Modelirovanie i analiz informacionnyh sistem PY - 2010 SP - 52 EP - 64 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/ LA - ru ID - MAIS_2010_17_1_a3 ER -
E. V. Kuz'min; D. Yu. Chalyi. On a reachability set of automaton counter machines. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 52-64. http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a3/
[1] A. Annichini, A. Bouajjani, M. Sighireanu, “TReX: A tool for reachability analysis of complex systems”, LNCS, 2102, Springer, 2001, 368–372 | Zbl
[2] T. Araki, T. Kasami, “Decidable problems on the strong connectivity of Petri net reachability sets”, Theoretical Computer Science, 4:1 (1977), 99–119 | DOI | MR | Zbl
[3] S. Bardin, J. Leroux, G. Point, “FAST extended release”, LNCS, 4144, Springer, 2006, 63–66 | MR
[4] J. Esparza, “Petri nets, commutative context-free grammars, and basic parallel processes”, Fundamenta Informatica, 31:1 (1997), 13–25 | MR | Zbl
[5] A. Finkel, J. Leroux, “How to compose Presburger-accelerations: Applications to broadcast protocols”, LNCS, 2556, Springer, 2002, 145–156 | MR | Zbl
[6] A. Finkel, A. Sangnier, “Reversal-bounded Counter Machines Revisited”, LNCS, 5162, Springer, 2008, 323–334 | MR | Zbl
[7] J. E. Hopcroft, J. Pansiot, “On the Reachability Problem for 5-Dimensional Vector Addition Systems”, Computer science technical report, 1976, Cornell University http://hdl.handle.net/1813/6102
[8] O. H. Ibarra, “Reversal-bounded multicounter machines and their decision problems”, J. ACM, 25:1 (1978), 116–133 | DOI | MR | Zbl
[9] D. König, Theorie der Endlichen und Unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig, 1936
[10] E. V. Kouzmin, V. A. Sokolov, “Communicating Colouring Automata”, Proc. Int. Workshop on Program Understanding (sat. of PSI'03), 2003, 40–46
[11] E. V. Kuzmin, V. A. Sokolov, D. Ju. Chaly, “Automaton Counter Machines”, Proc. of Int. Workshop on Program Understanding (sat. of PSI'09), 2009, 1–4
[12] LASH. http://www.montefiore.ulg.ac.be/b̃oigelot/research/lash
[13] J. Leroux, G. Sutre, “Flat counter almost everywhere!”, LNCS, 3707, Springer, 2005, 474–488 | Zbl
[14] E. W. Mayr, “Persistence of vector replacement systems is decidable”, Acta Informatica, 15 (1981), 309–318 | DOI | MR | Zbl
[15] E. W. Mayr, “An algorithm for the general Petri net reachability problem”, SIAM J. Comput., 13:3 (1984), 441–460 | DOI | MR | Zbl
[16] M. Presburger, “Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt”, Sprawozdanie z I Kongresu matematyków krajów slowiańskich, Warsaw, 1930, 92–101 | Zbl
[17] G. Vidal-Naquet, “Petri nets and regular languages”, J. Comput. Syst. Sci., 23:3 (1981), 299–325 | DOI | MR | Zbl
[18] S. Ginzburg, Matematicheskaya teoriya kontekstno-svobodnykh yazykov, Mir, M., 1970, 328 pp.
[19] E. V. Kuzmin, V. A. Sokolov, “Vzaimodeistvuyuschie raskrashivayuschie protsessy”, Modelirovanie i analiz informatsionnykh sistem, 11:2 (2004), 8–17
[20] E. V. Kuzmin, D. Yu. Chalyi, “Ob odnom klasse schetchikovykh mashin”, Modelirovanie i analiz informatsionnykh sistem, 16:2 (2009), 75–82 | MR
[21] E. V. Kuzmin, D. Yu. Chalyi, “O mnozhestve dostizhimosti avtomatnykh trekhschetchikovykh mashin”, Modelirovanie i analiz informatsionnykh sistem, 16:3 (2009), 77–84
[22] M. Minskii, Vychisleniya i avtomaty, Mir, M., 1971, 268 pp. | MR