Business cycles and torus in the non-homogeneous multiplier-accelerator model
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 86-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper analyzes the well known multiplier-accelerator model from a mathematical point of view. It introduces non-linear components to standard linear models. Using the theory of normal forms, the existence of the stable non-homogeneous invariant torus has been shown.
Keywords: non-linear second-order differential equation, periodic solution, theory of normal forms, multiplier-accelerator model, non-homogeneous model, Hopf's bifurcation, Landau's scenario for turbulence, non-linear dynamics.
Mots-clés : invariant torus
@article{MAIS_2009_16_4_a7,
     author = {E. S. Kokuykin and A. N. Kulikov},
     title = {Business cycles and torus in the non-homogeneous multiplier-accelerator model},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {86--95},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a7/}
}
TY  - JOUR
AU  - E. S. Kokuykin
AU  - A. N. Kulikov
TI  - Business cycles and torus in the non-homogeneous multiplier-accelerator model
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 86
EP  - 95
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a7/
LA  - ru
ID  - MAIS_2009_16_4_a7
ER  - 
%0 Journal Article
%A E. S. Kokuykin
%A A. N. Kulikov
%T Business cycles and torus in the non-homogeneous multiplier-accelerator model
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 86-95
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a7/
%G ru
%F MAIS_2009_16_4_a7
E. S. Kokuykin; A. N. Kulikov. Business cycles and torus in the non-homogeneous multiplier-accelerator model. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 86-95. http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a7/

[1] T. Pu, Nelineinaya ekonomicheskaya dinamika, Udmurtskii universitet, Izhevsk, 2000, 200 pp.

[2] V.-B. Zang, Sinergeticheskaya ekonomika. Vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir, M., 1999, 335 pp.

[3] P. A. Samulson, Foundations of Economic Analysis, Mass. Harvarel University Press, Cambridge, 1977

[4] J. R. Hicks, Contribution to the theory of the trade cycle, Oxford University Press, Oxford, 1950

[5] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Razvitie turbulentnosti po Landau v modeli multiplikator-akselerator”, Doklady RAN, 420:6 (2008), 739–743 | MR | Zbl

[6] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Matematicheskie aspekty teorii razvitiya turbulentnosti po Landau”, Uspekhi matematicheskikh nauk, 63:2 (2008), 21–84 | MR | Zbl

[7] E. V. Korshunova, A. N. Kulikov, “Prostranstvenno-neodnorodnye tory v modeli multiplikator-akselerator”, Model. i analiz inform. sistem, 15:1 (2008), 45–50

[8] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR

[9] A. Yu. Kolesov, A. N. Kulikov, Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Ucheb. posobie, Yaroslavl, 2003, 107 pp.

[10] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Nauka, M., 1998, 192 pp.