Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature $(k,k,2,0),$ where $k\ge 2$. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory.
Keywords: complex supermanifold, homogeneous complex supermanifold, tangent sheaf.
Mots-clés : retract
@article{MAIS_2009_16_3_a1,
     author = {M. A. Bashkin},
     title = {Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a1/}
}
TY  - JOUR
AU  - M. A. Bashkin
TI  - Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 14
EP  - 21
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a1/
LA  - ru
ID  - MAIS_2009_16_3_a1
ER  - 
%0 Journal Article
%A M. A. Bashkin
%T Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 14-21
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a1/
%G ru
%F MAIS_2009_16_3_a1
M. A. Bashkin. Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 14-21. http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a1/

[1] M. A. Bashkin, A. L. Onischik, “Odnorodnye nerasschepimye supermnogoobraziya nad kompleksnoi proektivnoi pryamoi”, Matematika, kibernetika, informatika, Trudy mezhdunarodnoi nauchnoi konferentsii pamyati A. Yu. Levina, YarGU, Yaroslavl, 2008, 40–57

[2] V. A. Bunegina, A. L. Onischik, “Odnorodnye supermnogoobraziya, svyazannye s kompleksnoi proektivnoi pryamoi”, Sovremennaya matematika i ee prilozheniya, 19, VINITI, Moskva, 2001, 141–180 | MR | Zbl

[3] A. L. Onischik, “Problemy klassifikatsii kompleksnykh supermnogoobrazii”, Matematika v Yaroslavskom universitete, Sb. obzornykh statei. K 25-letiyu matematicheskogo fakulteta, YarGU, Yaroslavl, 2001, 7–34 | MR

[4] V. A. Bunegina, A. L. Onishchik, “Two families of flag supermanifolds”, Different. Geom. and its Appl., 4 (1994), 329–360 | DOI | MR | Zbl

[5] A. L. Onishchik, “A Construction of Non-Split Supermanifolds”, Annals of Global Analysis and Geometry, 16 (1998), 309–333 | DOI | MR | Zbl