On equivalence classes of separated nets
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 109-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove several sufficient conditions for changes of a separated net to remain in the same bi-Lipschitz equivalence class. Also, using the construction of D. Burago and B. Kleiner we obtain a concrete example of a separated net which is not bi-Lipschitz equivalent to a lattice.
Keywords: separated net, bi-Lipschitz equivalence, Euclidean space.
@article{MAIS_2009_16_2_a6,
     author = {A. I. Garber},
     title = {On equivalence classes of separated nets},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/}
}
TY  - JOUR
AU  - A. I. Garber
TI  - On equivalence classes of separated nets
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 109
EP  - 118
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/
LA  - ru
ID  - MAIS_2009_16_2_a6
ER  - 
%0 Journal Article
%A A. I. Garber
%T On equivalence classes of separated nets
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 109-118
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/
%G ru
%F MAIS_2009_16_2_a6
A. I. Garber. On equivalence classes of separated nets. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/

[1] M. Gromov Asymptotic invariants for infinite groups, Geometric group theory, London Math. Soc. Lecture Notes, 182, eds. J. A. Niblo, M. A. Roller, J. W. S. Cassels, 1993 | MR | Zbl

[2] O. V. Bogopolskii, “Beskonechnye soizmerimye giperbolicheskie gruppy bilipshitsevo ekvivalentny”, Algebra i logika, 36:3 (1997), 259–272 | MR

[3] P. Papasoglu, “Homogeneous trees are bi-Lipschitz equivalent”, Geom. Dedicata, 54 (1995), 301–306 | DOI | MR | Zbl

[4] K. Whyte, “Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture”, Duke Math. J., 99 (1999), 93–112 | DOI | MR | Zbl

[5] D. Burago, B.Kleiner, “Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps”, Geom. Funct. Anal., 8 (1998), 273–282 | DOI | MR | Zbl

[6] C. McMullen, “Lipschitz maps and nets in Euclidean space”, Geom. Funct. Anal., 8 (1998), 304–314 | DOI | MR | Zbl

[7] D. Burago, B. Kleiner, “Rectifying separated nets”, Geom. and Func. Anal., 12 (2002), 80–92 | DOI | MR | Zbl