Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2009_16_2_a6, author = {A. I. Garber}, title = {On equivalence classes of separated nets}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {109--118}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/} }
A. I. Garber. On equivalence classes of separated nets. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a6/
[1] M. Gromov Asymptotic invariants for infinite groups, Geometric group theory, London Math. Soc. Lecture Notes, 182, eds. J. A. Niblo, M. A. Roller, J. W. S. Cassels, 1993 | MR | Zbl
[2] O. V. Bogopolskii, “Beskonechnye soizmerimye giperbolicheskie gruppy bilipshitsevo ekvivalentny”, Algebra i logika, 36:3 (1997), 259–272 | MR
[3] P. Papasoglu, “Homogeneous trees are bi-Lipschitz equivalent”, Geom. Dedicata, 54 (1995), 301–306 | DOI | MR | Zbl
[4] K. Whyte, “Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture”, Duke Math. J., 99 (1999), 93–112 | DOI | MR | Zbl
[5] D. Burago, B.Kleiner, “Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps”, Geom. Funct. Anal., 8 (1998), 273–282 | DOI | MR | Zbl
[6] C. McMullen, “Lipschitz maps and nets in Euclidean space”, Geom. Funct. Anal., 8 (1998), 304–314 | DOI | MR | Zbl
[7] D. Burago, B. Kleiner, “Rectifying separated nets”, Geom. and Func. Anal., 12 (2002), 80–92 | DOI | MR | Zbl