A commutativity criterion for a group of odd order
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called simply reducible ($SR$-group) if it has the following two properties: 1. Any element of this group is conjugate to its inverse. 2. The tensor product of any two irreducible representations is decomposed into a sum of irreducible representations of the group $G$ with multiplicities at most one. There are some generalizations of $SR$-groups. In particular, a finite group $G$ is called $ASR$-group if the tensor square of any irreducible representation $G$ is decomposed into a sum of irreducible representations of this group with multiplicities at most one. It has been proved that $ASR$-groups of odd order are abelian.
Keywords: finite groups, representations, characters, simply reducible groups.
@article{MAIS_2009_16_2_a5,
     author = {L. S. Kazarin and E. I. Chankov},
     title = {A commutativity criterion for a group of odd order},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a5/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - E. I. Chankov
TI  - A commutativity criterion for a group of odd order
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 103
EP  - 108
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a5/
LA  - ru
ID  - MAIS_2009_16_2_a5
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A E. I. Chankov
%T A commutativity criterion for a group of odd order
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 103-108
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a5/
%G ru
%F MAIS_2009_16_2_a5
L. S. Kazarin; E. I. Chankov. A commutativity criterion for a group of odd order. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 103-108. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a5/

[1] E. Bannai, T. Ito, Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR

[2] L. S. Kazarin, V. V. Yanishevskii, “O konechnykh prosto privodimykh gruppakh”, Algebra i Analiz, 19:6 (2007), 86–116 | MR

[3] A. I. Kostrikin, Vvedenie v algebru, v. 3, Osnovnye struktury algebry, Fizmatlit, M., 2001

[4] M. Khamermesh, Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966

[5] V. V. Yanishevskii, Struktura konechnykh $SR$-grupp, Dis. ... kand. fiz.-mat. nauk, Yaroslavl, 2008

[6] E. A. Bertram, “On large cyclic subgroups of finite groups”, Proc. Amer. Math. Soc., 56 (1976), 63–66 | DOI | MR | Zbl

[7] I. M. Isaacs, Character theory of finite groups, Acad. Press, N.Y., 1976 | MR | Zbl

[8] G. Mackey, “Multiplicity free representations of finite groups”, Pacific. J. Math., 8 (1958), 503–510 | MR

[9] E. P. Wigner, “On representations of finite groups”, Amer. J. Math., 63 (1941), 57–63 | DOI | MR | Zbl