Properties of e-degrees of the bounded total sets
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we give a definition of the bounded total sets, and properties of e-degrees of the bounded total sets are studied.
Keywords: computability, enumeration reducibility, enumeration degrees.
@article{MAIS_2009_16_2_a3,
     author = {S. V. Rozhkov},
     title = {Properties of e-degrees of the bounded total sets},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/}
}
TY  - JOUR
AU  - S. V. Rozhkov
TI  - Properties of e-degrees of the bounded total sets
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 83
EP  - 87
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/
LA  - ru
ID  - MAIS_2009_16_2_a3
ER  - 
%0 Journal Article
%A S. V. Rozhkov
%T Properties of e-degrees of the bounded total sets
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 83-87
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/
%G ru
%F MAIS_2009_16_2_a3
S. V. Rozhkov. Properties of e-degrees of the bounded total sets. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 83-87. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/

[1] Robert I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, New York, London, 1987 | MR

[2] R. Fridberg, H. Rogers, “Reducibility and completness for sets of integers”, Z. math. Logic Grundl. Math., 5 (1959), 117–125 | DOI | MR

[3] K. McEvoy, “Jumps of quasi-minimal enumeration degrees”, J. Symb. Logic., 50 (1985), 839–848 | DOI | MR | Zbl

[4] B. Solon, S. Rozhkov, “Enumeration degrees of the bounded total sets”, Theory and Applications of Models of Computation, Proceedings of Third International Conference (TAMC 2006, Beijing, China, May 15–20), LNCS, 3959, eds. J-Y. Cai, S. Barry Cooper, A. Li, Springer, New York, 2006, 737–745 | MR | Zbl

[5] L. Gutteridge, Some results on e-reducibility, Ph.D. Diss., Burnaby, 1971