Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2009_16_2_a3, author = {S. V. Rozhkov}, title = {Properties of e-degrees of the bounded total sets}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {83--87}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/} }
S. V. Rozhkov. Properties of e-degrees of the bounded total sets. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 83-87. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a3/
[1] Robert I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, New York, London, 1987 | MR
[2] R. Fridberg, H. Rogers, “Reducibility and completness for sets of integers”, Z. math. Logic Grundl. Math., 5 (1959), 117–125 | DOI | MR
[3] K. McEvoy, “Jumps of quasi-minimal enumeration degrees”, J. Symb. Logic., 50 (1985), 839–848 | DOI | MR | Zbl
[4] B. Solon, S. Rozhkov, “Enumeration degrees of the bounded total sets”, Theory and Applications of Models of Computation, Proceedings of Third International Conference (TAMC 2006, Beijing, China, May 15–20), LNCS, 3959, eds. J-Y. Cai, S. Barry Cooper, A. Li, Springer, New York, 2006, 737–745 | MR | Zbl
[5] L. Gutteridge, Some results on e-reducibility, Ph.D. Diss., Burnaby, 1971