Keywords: entropy, stationary process, metric, nonparametric estimator, symmetric Bernoulli measure.
@article{MAIS_2009_16_1_a3,
author = {N. E. Timofeeva},
title = {Line metric for the entropy estimation},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {44--53},
year = {2009},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a3/}
}
N. E. Timofeeva. Line metric for the entropy estimation. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a3/
[1] I. S. Gradshtein , I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971
[2] L. Devroye, “Exponentional inequalities in nonpametric estimation”, Nonparametric Functional Estimation and Related Topics, NATO ASI Series, ed. G. Roussas, Kluwer Academic Publishers, Dordrecht, 1991, 31–44 | MR
[3] C. McDiarmid, “On the method of bounded differences”, Surveys in Combinatorics, Cambridge University Press, Cambridge, 1989, 148–188 | MR
[4] A. Kaltchenko, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl
[5] A. Kaltchenko, N. Timofeeva, “Rate of convergence of the nearest neighbor entropy estimator”, Int. J. Electron. Commun. (AEU), 62:12 (2008) | MR
[6] E. A. Timofeev, “Statisticheski otsenivaemye invarianty mer”, Algebra i analiz, 17:3 (2005), 204–236 | MR