On the number of components in edge unfoldings of convex polyhedra
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 16-23
Voir la notice de l'article provenant de la source Math-Net.Ru
In the theory of convex polyhedra there is a problem left unsolved which is sometimes called The Durer problem: Does every convex polyhedron have at least one connected unfolding? In this paper we consider a related problem: Find the upper bound $c(P)$ for the number of components in the edge unfolding of a convex polyhedron $P$ in terms of the number $F$ of faces. We showed that $c(P)$ does not exceed the cardinality of any dominating set in the dual graph $G(P)$ of the polyhedron $P$. Next we proved that there exists a dominating set in $G(P)$ of cardinality not more than $3F/7$. These two statements lead to an estimation $c(P)\le 3F/7$ that was proved in this work.
Keywords:
convex polyhedron, edge unfolding, dominating set.
@article{MAIS_2009_16_1_a1,
author = {V. V. Astakhov and A. A. Gavrilyuk},
title = {On the number of components in edge unfoldings of convex polyhedra},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {16--23},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/}
}
TY - JOUR AU - V. V. Astakhov AU - A. A. Gavrilyuk TI - On the number of components in edge unfoldings of convex polyhedra JO - Modelirovanie i analiz informacionnyh sistem PY - 2009 SP - 16 EP - 23 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/ LA - ru ID - MAIS_2009_16_1_a1 ER -
V. V. Astakhov; A. A. Gavrilyuk. On the number of components in edge unfoldings of convex polyhedra. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 16-23. http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/