Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2009_16_1_a1, author = {V. V. Astakhov and A. A. Gavrilyuk}, title = {On the number of components in edge unfoldings of convex polyhedra}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {16--23}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/} }
TY - JOUR AU - V. V. Astakhov AU - A. A. Gavrilyuk TI - On the number of components in edge unfoldings of convex polyhedra JO - Modelirovanie i analiz informacionnyh sistem PY - 2009 SP - 16 EP - 23 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/ LA - ru ID - MAIS_2009_16_1_a1 ER -
V. V. Astakhov; A. A. Gavrilyuk. On the number of components in edge unfoldings of convex polyhedra. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 16-23. http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a1/
[1] A. S. Tarasov, “Mnogogranniki, ne dopuskayuschie naturalnykh razvërtok”, Uspekhi matematicheskikh nauk, 54:3 (1999), 185–186 | MR | Zbl
[2] A. A. Glazyrin, A. S. Tarasov, “Anti-Dyurer — gipoteza dlya nevypuklykh mnogogrannikov”, Materialy IX Mezhdunarodnogo seminara «Diskretnaya matematika i eë prilozheniya», M., 2007
[3] Erik D. Demaine and Joseph O'Rourke, Geometric Folding Algorithms, Cambridge University Press, 2007 | MR
[4] Günter M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995 | MR