Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2008_15_4_a1, author = {S. L. Berlov}, title = {Relationships between the clique number, chromatic number and degree for some graphs}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {10--22}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a1/} }
TY - JOUR AU - S. L. Berlov TI - Relationships between the clique number, chromatic number and degree for some graphs JO - Modelirovanie i analiz informacionnyh sistem PY - 2008 SP - 10 EP - 22 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a1/ LA - ru ID - MAIS_2008_15_4_a1 ER -
S. L. Berlov. Relationships between the clique number, chromatic number and degree for some graphs. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 10-22. http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a1/
[1] S. L. Berlov, “Helly's property for $n$-cliques and the degree of a graph”, Zapiski Nauchnyh Seminarov POMI, 340, 2006, 5–9 | MR | Zbl
[2] N. Alon, “The strong chromatic number of a graph”, Random Struct. Alg., 3 (1992), 1–7 | DOI | MR | Zbl
[3] P. E. Haxell, “On the Strong Chromatic Number”, Combinatorics, Probability and Computing, 13:6 (2004), 857–865 | DOI | MR | Zbl
[4] M. Axenovich, R. Martin, “On the Strong Chromatic Number of Graphs”, SIAM Journal on Discrete Mathematics archive, 20:3 (2006), 741–747 | DOI | MR | Zbl
[5] P. Erdös, T. Gallai, “On minimal number of vertices representing the edges of a graph”, Publ. Math. Inst. Hung. Acad. Sci., 6 (1961), 89–96 | MR
[6] R. L. Brooks, “On coloring the nodes of a network”, Proc. Cambrige Phil. Soc., 37 (1941), 194–197 | DOI | MR
[7] B. Reed, “A Strengthening of Brooks' Theorem”, Journal of Combinatorial Theory, Series B, 76:2 (1999), 136–149 | DOI | MR | Zbl
[8] A. V. Kostochka, “Degree, density and chromatic number of graphs”, Metody Diskret. Analiz., 1980, no. 35, 45–70, 104–105 | MR | Zbl
[9] T. Jensen, B. Toft, Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, 1995 | MR
[10] P. A. Catlin, “Survey of extensions of Brooks' graph coloring theorem”, Annals of the New York Academy of Sciences, 328 (1979), 95 | DOI | MR | Zbl
[11] P. Catlin, “Brooks' graph-coloring theorem and the independence number”, Journal of Combinatorial Theory, Series B, 27 (1979), 42–48 | DOI | MR | Zbl
[12] A. Beutelspacher, P. Hering, “Minimal graphs for which the chromatic number equals the maximal degree”, Ars Combinatorica, 18 (1984), 201–216 | MR | Zbl
[13] O. Borodin, A. Kostochka, “On an upper bound on a graph's chromatic number, depending on the graphs's degree and density”, Journal of Combinatorial Theory, Series B, 23 (1977), 247–250 | DOI | MR | Zbl