Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2008_15_3_a1, author = {E. V. Kuz'min}, title = {The boundedness problem for lossy counter machines}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {14--27}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_3_a1/} }
E. V. Kuz'min. The boundedness problem for lossy counter machines. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 3, pp. 14-27. http://geodesic.mathdoc.fr/item/MAIS_2008_15_3_a1/
[1] E. M. Klark, O. Gramberg, D. Peled, Verifikatsiya modelei programm: Model Checking, MTsNMO, 2002, 416 pp.
[2] E. V. Kuzmin, V. A. Sokolov, Strukturirovannye sistemy perekhodov, FIZMATLIT, M., 2006, 178 pp. | MR
[3] E. V. Kuzmin, D. Yu. Chalyi, “O razreshimosti problem ogranichennosti dlya schetchikovykh mashin Minskogo”, Modelirovanie i analiz informatsionnykh sistem, 15:1 (2008), 16–26
[4] M. Minskii, Vychisleniya i avtomaty, Mir, M., 1971, 268 pp. | MR
[5] C. Dufourd, P. Jancar, Ph. Schnoebelen, “Boundedness of Reset P/T nets”, Proc. ICALP'99, LNCS, 1644, 1999, 301–310 | MR | Zbl
[6] R. Mayr, Lossy counter machines, Tech. Report TUM-I9827, Institut für Informatik, TUM, Germany, October 1998
[7] R. Schroeppel, A Two counter Machine Cannot Calculate $2^N$, Artificial Intelligence Memo #257, Massachusetts Institute of Technology, A.I. Laboratory, 1972, 32 pp.