Integral near-Eiler characteristics of halftone digital images
Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 34-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In works analog of Eiler characteristics for halftone images introduce by the instrumentality of integral expression. Deduced theorem allows to calculate this characteristic by summation of some function defined on halftone fragments of size 2*2. Example and computer model mentioned show that foregoing characteristic is a natural continuation of Eiler characteristics on the set of halftone images.
@article{MAIS_2008_15_1_a4,
     author = {P. G. Parfenov and I. A. Kapliy},
     title = {Integral {near-Eiler} characteristics of halftone digital images},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {34--36},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a4/}
}
TY  - JOUR
AU  - P. G. Parfenov
AU  - I. A. Kapliy
TI  - Integral near-Eiler characteristics of halftone digital images
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2008
SP  - 34
EP  - 36
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a4/
LA  - ru
ID  - MAIS_2008_15_1_a4
ER  - 
%0 Journal Article
%A P. G. Parfenov
%A I. A. Kapliy
%T Integral near-Eiler characteristics of halftone digital images
%J Modelirovanie i analiz informacionnyh sistem
%D 2008
%P 34-36
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a4/
%G ru
%F MAIS_2008_15_1_a4
P. G. Parfenov; I. A. Kapliy. Integral near-Eiler characteristics of halftone digital images. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 34-36. http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a4/

[1] A. Rozenfeld, Raspoznavanie i obrabotka izobrazhenii s pomoschyu vychislitelnykh mashin, Mir, M., 1972

[2] U. Prett, Tsifrovaya obrabotka izobrazhenii, Mir, M., 1982

[3] S. B. Gray, “Local properties of binary images in two dimensions”, IEEE Trans. Computers, C-20:5 (1971), 551–561 | DOI

[4] C. R. Dyer, “Computing the Euler number of an image from its quadtree”, Computer graphics and image proccesing, 13 (1980), 270–276 | DOI

[5] H. Bieri, W. Nef, “Algorihms for Euler characteristic and related additive functionals of digital objects”, Computer vision, graphics and image proccesing, 28 (1984), 166–175 | DOI | Zbl

[6] M. Mantyla, “A note on the modeling space of Euler operators”, Computer vision, graphics and image proccesing, 26 (1984), 45–60 | DOI | Zbl

[7] M. H. Chen, P. F. Yan, “A fast algorithm to calculate the Euler number for binary images”, Pattern Recognition Letters, 8 (1988), 295–297, North-Holland | DOI | Zbl

[8] P. K. Saha, B. B. Chaudhuri, “A new approach to computing the Euler characteristic”, Pattern Recognition, 28:12 (1995), 1955–1963 | DOI | MR

[9] S. J. L. Diaz-De-Leon, J. H. Sossa-Azuela, “On the computation of the Euler number of binary object”, Pattern Recognition, 29:3 (1996), 471–476 | DOI

[10] P. G. Parfenov, “Ob eilerovoi kharakteristike izobrazheniya”, Arkhitektura i programmnoe obespechenie vychislitelnykh setei, Yaroslavl, 1992, 76–79

[11] P. G. Parfenov, “Mnogochleny na izobrazheniyakh, vychislyayuschie eilerovu kharakteristiku”, Modelirovanie i analiz informatsionnykh sistem, 8:2 (2001), 23–24 | MR

[12] P. G. Parfenov, “Nechetkie analogi eilerovoi kharakteristiki dlya polutonovykh izobrazhenii”, Modelirovanie i analiz informatsionnykh sistem, 9:1 (2002), 19–20