On the lower estimate for $k+1$-nondecomposible permutations
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 4, pp. 53-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A permutation $\tau$ is called $k+1$-nondecomposible if the following condition holds: if $\{a_1,\dots,a_in\}$ is a set of natural numbers such that $1\le a_1,\dots,$ and $\tau(a_1)\tau(a_2)\dots\tau(a_i)$, then $i\le k$. By $f(n,k)$ denote the number of all not $k+1$-nondecomposible permutations. The following statement was proved in this paper: suppose $K(n)=o(\root3\of{n}/\ln n)$; then $f(n,k)=k^{2n-o(n)}$ for every $k \le K(n)$.
@article{MAIS_2007_14_4_a8,
     author = {G. R. Chelnokov},
     title = {On the lower estimate for $k+1$-nondecomposible permutations},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {53--56},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/}
}
TY  - JOUR
AU  - G. R. Chelnokov
TI  - On the lower estimate for $k+1$-nondecomposible permutations
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2007
SP  - 53
EP  - 56
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/
LA  - ru
ID  - MAIS_2007_14_4_a8
ER  - 
%0 Journal Article
%A G. R. Chelnokov
%T On the lower estimate for $k+1$-nondecomposible permutations
%J Modelirovanie i analiz informacionnyh sistem
%D 2007
%P 53-56
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/
%G ru
%F MAIS_2007_14_4_a8
G. R. Chelnokov. On the lower estimate for $k+1$-nondecomposible permutations. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 4, pp. 53-56. http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/

[1] A. I. Shirshov, “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43:2 (1957), 277–283 | Zbl

[2] V. N. Latyshev, “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya $PI$-algebr”, UMN, 27:4(166) (1972), 213–214 | MR | Zbl