On the lower estimate for $k+1$-nondecomposible permutations
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 4, pp. 53-56
Voir la notice de l'article provenant de la source Math-Net.Ru
A permutation $\tau$ is called $k+1$-nondecomposible if the following condition holds: if $\{a_1,\dots,a_in\}$ is a set of natural numbers such that $1\le a_1,\dots,$ and $\tau(a_1)\tau(a_2)\dots\tau(a_i)$, then $i\le k$. By $f(n,k)$ denote the number of all not $k+1$-nondecomposible permutations. The following statement was proved in this paper: suppose $K(n)=o(\root3\of{n}/\ln n)$; then $f(n,k)=k^{2n-o(n)}$ for every $k \le K(n)$.
@article{MAIS_2007_14_4_a8,
author = {G. R. Chelnokov},
title = {On the lower estimate for $k+1$-nondecomposible permutations},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {53--56},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/}
}
G. R. Chelnokov. On the lower estimate for $k+1$-nondecomposible permutations. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 4, pp. 53-56. http://geodesic.mathdoc.fr/item/MAIS_2007_14_4_a8/