Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 8-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be the orthogonal projection onto polynomials of $n$ variables of degree $\le 1$ and $\|\cdot\|$ be the norm of an operator from $C([0,1]^n)$ to $C([0,1]^n)$. In this paper we show that $C_1\theta_n\le\|H\|\le C_2\theta_n$, $n\in\mathrm{N}$. Here $\theta_n$ denotes the minimal norm of a projection dealing with the linear interpolation on the cube $[0,1]^n$. The proofs make use of certain properties of the Eulerian numbers and the central $B$-splines and also some previous results of the author.
@article{MAIS_2007_14_3_a1,
author = {M. V. Nevskij},
title = {Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {8--28},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a1/}
}
TY - JOUR AU - M. V. Nevskij TI - Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube JO - Modelirovanie i analiz informacionnyh sistem PY - 2007 SP - 8 EP - 28 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a1/ LA - ru ID - MAIS_2007_14_3_a1 ER -
M. V. Nevskij. Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 8-28. http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a1/